Optimization of 200 MWt HTGR with ThUN-based fuel and zirconium carbide TRISO layer

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY Kerntechnik Pub Date : 2023-05-09 DOI:10.1515/kern-2023-0003
Fitria Miftasani, N. Widiawati, Nuri Trianti, T. Setiadipura, Z. Zuhair, D. Irwanto, S. Permana, Z. Su’ud
{"title":"Optimization of 200 MWt HTGR with ThUN-based fuel and zirconium carbide TRISO layer","authors":"Fitria Miftasani, N. Widiawati, Nuri Trianti, T. Setiadipura, Z. Zuhair, D. Irwanto, S. Permana, Z. Su’ud","doi":"10.1515/kern-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract TRISO fuel particle using ZrC has better strength and resistance to high temperatures than SiC. Previous studies show that the ZrC layer, as a substitution of SiC within the TRISO layer of coated fuel particles, has an insignificant difference in the performance of the neutronic aspect. Further neutronic studies are required to obtain the best combination of thorium-based fuel with ZrC coating for HTGR. This study analyzed the neutronic performance of three types of thorium-based fuels, oxide, carbide, and nitride, for HTGR. The reactor design refers to the High-Temperature Test Reactor with some axial and radial fuel configuration adjustments. This reactor is designed to operate at 200 MWt and has been modified to use a ZrC layer as a substitute for the SiC layer on the coated fuel particles. The neutronic study is carried out using SRAC2006 code with JENDL 4.0 nuclear data library. Neutronic parameters analyzed include multiplication factor, power peaking factor, and neutron spectrum. Neutronic analysis results show that thorium nitride fuel’s multiplication factor (keff) is better than other compared fuel types with k-eff 1.050, higher than thorium carbide, 1.004. At the same time, thorium oxide has been sub-critical. The power-peaking value of all materials is close to the ideal peaking value that is one. Other neutronic aspects, such as the neutron spectrum for three compared fuel types, have a similar trend.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"3 1","pages":"503 - 517"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2023-0003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract TRISO fuel particle using ZrC has better strength and resistance to high temperatures than SiC. Previous studies show that the ZrC layer, as a substitution of SiC within the TRISO layer of coated fuel particles, has an insignificant difference in the performance of the neutronic aspect. Further neutronic studies are required to obtain the best combination of thorium-based fuel with ZrC coating for HTGR. This study analyzed the neutronic performance of three types of thorium-based fuels, oxide, carbide, and nitride, for HTGR. The reactor design refers to the High-Temperature Test Reactor with some axial and radial fuel configuration adjustments. This reactor is designed to operate at 200 MWt and has been modified to use a ZrC layer as a substitute for the SiC layer on the coated fuel particles. The neutronic study is carried out using SRAC2006 code with JENDL 4.0 nuclear data library. Neutronic parameters analyzed include multiplication factor, power peaking factor, and neutron spectrum. Neutronic analysis results show that thorium nitride fuel’s multiplication factor (keff) is better than other compared fuel types with k-eff 1.050, higher than thorium carbide, 1.004. At the same time, thorium oxide has been sub-critical. The power-peaking value of all materials is close to the ideal peaking value that is one. Other neutronic aspects, such as the neutron spectrum for three compared fuel types, have a similar trend.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用thun基燃料和碳化锆TRISO层的200 MWt高温堆优化
摘要采用ZrC制成的TRISO燃料颗粒具有比SiC更好的强度和耐高温性能。以往的研究表明,ZrC层作为包覆燃料颗粒TRISO层内SiC的替代品,在中子方面的性能差异不显著。在高温高温堆中,需要进一步的中子研究来获得钍基燃料与ZrC涂层的最佳组合。本研究分析了三种钍基燃料(氧化物、碳化物和氮化物)用于高温高温堆的中子性能。反应堆设计是指对高温试验堆进行轴向和径向燃料配置调整后的设计。该反应堆的设计工作功率为200 MWt,并已被改进为使用ZrC层代替涂覆燃料颗粒上的SiC层。使用SRAC2006代码和JENDL 4.0核数据库进行中子研究。中子参数分析包括倍增因子、功率峰值因子和中子谱。中子分析结果表明,氮化钍燃料的乘数系数(keff)为1.050,高于碳化钍燃料的1.004,优于其他燃料类型。与此同时,氧化钍一直处于亚临界状态。所有材料的功率峰值都接近于理想峰值1。其他中子方面,如三种比较燃料类型的中子谱,也有类似的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Kerntechnik
Kerntechnik 工程技术-核科学技术
CiteScore
0.90
自引率
20.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).
期刊最新文献
Evaluation of the optimum safety performance of the nuclear reactor compact grounding system under lightning strikes and ground fault CFD and machine learning based hybrid model for passive dilution of helium in a top ventilated compartment Probing 6He induced reactions with nuclear level density Neutronic and thermal-hydraulic assessment of the TRR with new core designed based on tubular fuels An application for nonlinear heterogeneity-based isotherm models in characterization of niobium sorption on clay rocks and granite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1