Pseudo-BCS wave function from density matrix decomposition: Application in auxiliary-field quantum Monte Carlo

Zhi-Guang Xiao, Hao Shi, Shiwei Zhang
{"title":"Pseudo-BCS wave function from density matrix decomposition: Application in auxiliary-field quantum Monte Carlo","authors":"Zhi-Guang Xiao, Hao Shi, Shiwei Zhang","doi":"10.1103/PHYSREVRESEARCH.3.013065","DOIUrl":null,"url":null,"abstract":"We present a method to construct pseudo-BCS wave functions from the one-body density matrix. The resulting many-body wave function, which can be produced for any fermion systems, including those with purely repulsive interactions, has the form of a number-projected BCS form, or antisymmetrized germinal power (AGP). Such wave functions provide a better ansatz for correlated fermion systems than a single Slater determinant, and often better than a linear combination of Slater determinants (for example from a truncated active space calculation). We describe a procedure to build such a wave function conveniently from a given reduced density matrix of the system, rather than from a mean-field solution (which gives a Slater determinant for repulsive interactions). The pseudo-BCS wave function thus obtained reproduces the density matrix or minimizes the difference between the input and resulting density matrices. One application of the pseudo-BCS wave function is in auxiliary-field quantum Monte Carlo (AFQMC) calculations as the trial wave function to control the sign/phase problem. AFQMC is often among the most accurate general methods for correlated fermion systems. We show that the pseudo-BCS form further reduces the constraint bias and leads to improved accuracy compared to the usual Slater determinant trial wave functions, using the two-dimensional Hubbard model as an example. Furthermore, the pseudo-BCS trial wave function allows a new systematically improvable self-consistent approach, with pseudo-BCS trial wave function iteratively generated by AFQMC via the one-body density matrix.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a method to construct pseudo-BCS wave functions from the one-body density matrix. The resulting many-body wave function, which can be produced for any fermion systems, including those with purely repulsive interactions, has the form of a number-projected BCS form, or antisymmetrized germinal power (AGP). Such wave functions provide a better ansatz for correlated fermion systems than a single Slater determinant, and often better than a linear combination of Slater determinants (for example from a truncated active space calculation). We describe a procedure to build such a wave function conveniently from a given reduced density matrix of the system, rather than from a mean-field solution (which gives a Slater determinant for repulsive interactions). The pseudo-BCS wave function thus obtained reproduces the density matrix or minimizes the difference between the input and resulting density matrices. One application of the pseudo-BCS wave function is in auxiliary-field quantum Monte Carlo (AFQMC) calculations as the trial wave function to control the sign/phase problem. AFQMC is often among the most accurate general methods for correlated fermion systems. We show that the pseudo-BCS form further reduces the constraint bias and leads to improved accuracy compared to the usual Slater determinant trial wave functions, using the two-dimensional Hubbard model as an example. Furthermore, the pseudo-BCS trial wave function allows a new systematically improvable self-consistent approach, with pseudo-BCS trial wave function iteratively generated by AFQMC via the one-body density matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密度矩阵分解的伪bcs波函数:在辅助场量子蒙特卡罗中的应用
提出了一种由单体密度矩阵构造伪bcs波函数的方法。由此产生的多体波函数可以用于任何费米子系统,包括那些具有纯排斥相互作用的系统,具有数字投影BCS形式或反对称生发力(AGP)的形式。这样的波函数为相关费米子系统提供了比单个斯莱特行列式更好的分析,并且通常比斯莱特行列式的线性组合更好(例如从截断的活动空间计算)。我们描述了一个过程,可以方便地从系统的给定简化密度矩阵中构建这样的波函数,而不是从平均场解中(它给出了排斥相互作用的斯莱特行列式)。由此获得的伪bcs波函数再现密度矩阵或最小化输入和结果密度矩阵之间的差异。伪bcs波函数的一个应用是在辅助场量子蒙特卡罗(AFQMC)计算中作为控制符号/相位问题的试验波函数。AFQMC通常是相关费米子系统最精确的一般方法之一。我们以二维Hubbard模型为例表明,与通常的Slater行列式试波函数相比,伪bcs形式进一步减少了约束偏差,并提高了精度。此外,伪bcs试波函数允许一个新的系统改进的自洽方法,伪bcs试波函数由AFQMC通过一体密度矩阵迭代生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electronic and magnetic properties of iridium ilmenites $A$IrO$_3$ ($A=$ Mg, Zn, and Mn). Landau-Fermi liquids in disguise Diffusion in the Anderson model in higher dimensions Discovery of an ultra-quantum spin liquid Topological excitations in quasi two-dimensional quantum magnets with weak interlayer interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1