Mathematical Information Retrieval (MIR) from Scanned PDF Documents and MathML Conversion

A. Nazemi, I. Murray, D. McMeekin
{"title":"Mathematical Information Retrieval (MIR) from Scanned PDF Documents and MathML Conversion","authors":"A. Nazemi, I. Murray, D. McMeekin","doi":"10.2197/ipsjtcva.6.132","DOIUrl":null,"url":null,"abstract":"This paper describes part of an ongoing comprehensive research project that is aimed at generating a \nMathML format from images of mathematical expressions that have been extracted from scanned PDF documents. \nA MathML representation of a scanned PDF document reduces the document’s storage size and encodes the math- \nematical notation and meaning. The MathML representation then becomes suitable for vocalization and accessible \nthrough the use of assistive technologies. In order to achieve an accurate layout analysis of a scanned PDF document, \nall textual and non-textual components must be recognised, identified and tagged. These components may be text or \nmathematical expressions and graphics in the form of images, figures, tables and/or diagrams. Mathematical expres- \nsions are one of the most significant components within scanned scientific and engineering PDF documents and need \nto be machine readable for use with assistive technologies. This research is a work in progress and includes multiple \ndifferent modules: detecting and extracting mathematical expressions, recursive primitive component extraction, non- \nalphanumerical symbols recognition, structural semantic analysis and merging primitive components to generate the \nMathML of the scanned PDF document. An optional module converts MathML to audio format using a Text to Speech \nengine (TTS) to make the document accessible for vision-impaired users. \nKeywords: math recognition, graphics recognition, Mathematical Informati","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"23 1","pages":"132-142"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.6.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes part of an ongoing comprehensive research project that is aimed at generating a MathML format from images of mathematical expressions that have been extracted from scanned PDF documents. A MathML representation of a scanned PDF document reduces the document’s storage size and encodes the math- ematical notation and meaning. The MathML representation then becomes suitable for vocalization and accessible through the use of assistive technologies. In order to achieve an accurate layout analysis of a scanned PDF document, all textual and non-textual components must be recognised, identified and tagged. These components may be text or mathematical expressions and graphics in the form of images, figures, tables and/or diagrams. Mathematical expres- sions are one of the most significant components within scanned scientific and engineering PDF documents and need to be machine readable for use with assistive technologies. This research is a work in progress and includes multiple different modules: detecting and extracting mathematical expressions, recursive primitive component extraction, non- alphanumerical symbols recognition, structural semantic analysis and merging primitive components to generate the MathML of the scanned PDF document. An optional module converts MathML to audio format using a Text to Speech engine (TTS) to make the document accessible for vision-impaired users. Keywords: math recognition, graphics recognition, Mathematical Informati
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从扫描的PDF文档和MathML转换的数学信息检索(MIR)
本文描述了一个正在进行的综合研究项目的一部分,该项目旨在从扫描的PDF文档中提取的数学表达式图像生成MathML格式。扫描PDF文档的MathML表示减少了文档的存储大小,并对数学符号和含义进行了编码。然后,MathML表示变得适合于发声,并且可以通过使用辅助技术进行访问。为了实现对扫描PDF文档的准确布局分析,必须识别、标识和标记所有文本和非文本组件。这些组件可以是文本或数学表达式,也可以是图像、数字、表格和/或图表形式的图形。数学表达式是扫描的科学和工程PDF文档中最重要的组成部分之一,需要机器可读才能与辅助技术一起使用。该研究包括数学表达式的检测与提取、递归原语成分提取、非字母数字符号识别、结构语义分析和原语成分合并生成扫描PDF文档的MathML等多个模块。一个可选模块使用文本到语音引擎(TTS)将MathML转换为音频格式,使视障用户可以访问该文档。关键词:数学识别,图形识别,数学信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
期刊最新文献
3D human pose estimation model using location-maps for distorted and disconnected images by a wearable omnidirectional camera Application of evolutionary and swarm optimization in computer vision: a literature survey Pseudo-labelling-aided semantic segmentation on sparsely annotated 3D point clouds Phase disambiguation using spatio-temporally modulated illumination in depth sensing Deep learning-based strategies for the detection and tracking of drones using several cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1