{"title":"Mitigation of Structural Vibrations Due to Pulse-Type-Near-Fault Earthquake by the Compliant Liquid Column Damper","authors":"A. K. Roy, Tanmoy Konar, A. Ghosh","doi":"10.1142/s1793431123500045","DOIUrl":null,"url":null,"abstract":"Pulse-type-near-fault (P-N) earthquake ground excitations can inflict serious damage to structures in built-up areas situated close to seismic faults. The high frequency content, high velocity pulses of long period, and fling effects cause P-N motions to impose large demands on both stiff and flexible structures. Among various passive control devices, the liquid column damper (LCD) is economical and its effectiveness is well-established for flexible structures under far-field earthquake ground motions. In this paper, the compliant form of the LCD (CLCD), which was specially developed to overcome the nonapplicability of the conventional LCD to stiff structures, is investigated for the vibration control of both stiff and flexible structures subjected to P-N ground motions. The study is carried out both in the frequency and in the time domain. Results indicate that the CLCD is successful in mitigating structural response to P-N ground motions. Some of the trends of response reduction with damper parameters are found to be different from those earlier reported for far-field earthquakes. Interestingly, in the case of flexible structures, while the CLCD is found to be fairly effective, the conventional LCD is rendered practically ineffective.","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earthquake and Tsunami","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1142/s1793431123500045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pulse-type-near-fault (P-N) earthquake ground excitations can inflict serious damage to structures in built-up areas situated close to seismic faults. The high frequency content, high velocity pulses of long period, and fling effects cause P-N motions to impose large demands on both stiff and flexible structures. Among various passive control devices, the liquid column damper (LCD) is economical and its effectiveness is well-established for flexible structures under far-field earthquake ground motions. In this paper, the compliant form of the LCD (CLCD), which was specially developed to overcome the nonapplicability of the conventional LCD to stiff structures, is investigated for the vibration control of both stiff and flexible structures subjected to P-N ground motions. The study is carried out both in the frequency and in the time domain. Results indicate that the CLCD is successful in mitigating structural response to P-N ground motions. Some of the trends of response reduction with damper parameters are found to be different from those earlier reported for far-field earthquakes. Interestingly, in the case of flexible structures, while the CLCD is found to be fairly effective, the conventional LCD is rendered practically ineffective.
期刊介绍:
Journal of Earthquake and Tsunami provides a common forum for scientists and engineers working in the areas of earthquakes and tsunamis to communicate and interact with one another and thereby enhance the opportunities for such cross-fertilization of ideas. The Journal publishes original papers pertaining to state-of-the-art research and development in Geological and Seismological Setting; Ground Motion, Site and Building Response; Tsunami Generation, Propagation, Damage and Mitigation, as well as Education and Risk Management following an earthquake or a tsunami.
We welcome papers in the following categories:
Geological and Seismological Aspects
Tectonics: (Geology - earth processes)
Fault processes and earthquake generation: seismology (earthquake processes)
Earthquake wave propagation: geophysics
Remote sensing
Earthquake Engineering
Geotechnical hazards and response
Effects on buildings and structures
Risk analysis and management
Retrofitting and remediation
Education and awareness
Material Behaviour
Soil
Reinforced concrete
Steel
Tsunamis
Tsunamigenic sources
Tsunami propagation: Physical oceanography
Run-up and damage: wave hydraulics.