Using A Priori Knowledge after Genetic Network Inference: Integrating Multiple Kinds of Knowledge

IF 0.4 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Chem-Bio Informatics Journal Pub Date : 2017-06-17 DOI:10.1273/CBIJ.17.53
Shuhei Kimura, Koji Kitazawa, M. Tokuhisa, M. Okada‐Hatakeyama
{"title":"Using A Priori Knowledge after Genetic Network Inference: Integrating Multiple Kinds of Knowledge","authors":"Shuhei Kimura, Koji Kitazawa, M. Tokuhisa, M. Okada‐Hatakeyama","doi":"10.1273/CBIJ.17.53","DOIUrl":null,"url":null,"abstract":"Several researchers have focused on the inference of genetic networks as a process for extracting useful information from gene expression data. Their work has led to the proposal of a number of methods for genetic network inference. Yet the genetic networks inferred by these methods often contain large numbers of false-positive regulations along with the true-positives. One effective way to reduce the number of erroneous regulations is to apply inference methods that use a priori knowledge on the properties of the genetic networks. The existing inference methods adopting this approach generally use a priori knowledge and the observed gene expression data simultaneously to determine whether or not the target genetic network actually contains each of the candidate regulations. In this study, we establish a new framework for “using a priori knowledge after genetic network inference.” The framework uses a priori knowledge only to modify the genetic network that has already been inferred by the other inference method. Based on this framework, we propose a new inference method that uses multiple kinds of a priori knowledge about genetic networks. The proposed method effectively combines multiple kinds of knowledge and computes the confidence values of regulations. Here, we confirm the effectiveness of the proposed method by applying it to artificial and actual genetic network inference problems. While only a small improvement is gained from the use of multiple kinds of a priori knowledge, we can improve the performance of many other existing inference methods by combining them with the method we propose here.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":"113 1","pages":"53-71"},"PeriodicalIF":0.4000,"publicationDate":"2017-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.17.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several researchers have focused on the inference of genetic networks as a process for extracting useful information from gene expression data. Their work has led to the proposal of a number of methods for genetic network inference. Yet the genetic networks inferred by these methods often contain large numbers of false-positive regulations along with the true-positives. One effective way to reduce the number of erroneous regulations is to apply inference methods that use a priori knowledge on the properties of the genetic networks. The existing inference methods adopting this approach generally use a priori knowledge and the observed gene expression data simultaneously to determine whether or not the target genetic network actually contains each of the candidate regulations. In this study, we establish a new framework for “using a priori knowledge after genetic network inference.” The framework uses a priori knowledge only to modify the genetic network that has already been inferred by the other inference method. Based on this framework, we propose a new inference method that uses multiple kinds of a priori knowledge about genetic networks. The proposed method effectively combines multiple kinds of knowledge and computes the confidence values of regulations. Here, we confirm the effectiveness of the proposed method by applying it to artificial and actual genetic network inference problems. While only a small improvement is gained from the use of multiple kinds of a priori knowledge, we can improve the performance of many other existing inference methods by combining them with the method we propose here.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传网络推理后的先验知识利用:多知识集成
一些研究人员将遗传网络的推断作为一种从基因表达数据中提取有用信息的过程。他们的工作导致了许多遗传网络推断方法的提出。然而,通过这些方法推断的遗传网络往往包含大量的假阳性调控和真阳性调控。利用遗传网络的先验知识进行推理是减少错误规则数量的有效方法之一。采用该方法的现有推理方法通常同时使用先验知识和观察到的基因表达数据来确定目标遗传网络是否实际上包含每个候选规则。在本研究中,我们建立了一个“遗传网络推理后使用先验知识”的新框架。该框架仅使用先验知识来修改已被其他推理方法推断出的遗传网络。在此基础上,提出了一种利用遗传网络的多种先验知识进行推理的新方法。该方法有效地结合了多种知识,计算出规则的置信值。在此,我们通过将该方法应用于人工和实际的遗传网络推理问题来验证该方法的有效性。虽然使用多种先验知识只获得了很小的改进,但我们可以通过将许多其他现有的推理方法与我们在这里提出的方法相结合来提高它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem-Bio Informatics Journal
Chem-Bio Informatics Journal BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
0.60
自引率
0.00%
发文量
8
期刊最新文献
Application of Model Core Potentials to Zn- and Mg-containing Metalloproteins in the Fragment Molecular Orbital Method How Beneficial or Threatening is Artificial Intelligence? Difficulties and prospects of data curation for ADME in silico modeling Multiple Logistic Regression Modeling of Compound Class as Active or Inactive Against COX-2 and Prediction on Designed Coxib Derivatives and Similar Compounds Fragment molecular orbital calculations containing Mg2+ ions: PPlase domain of Cyclophilin G
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1