Intelligent Questionnaires Using Approximate Dynamic Programming

Q1 Social Sciences i-com Pub Date : 2020-12-01 DOI:10.1515/icom-2020-0022
Frédéric Logé, E. Le Pennec, H. Amadou-Boubacar
{"title":"Intelligent Questionnaires Using Approximate Dynamic Programming","authors":"Frédéric Logé, E. Le Pennec, H. Amadou-Boubacar","doi":"10.1515/icom-2020-0022","DOIUrl":null,"url":null,"abstract":"Abstract Inefficient interaction such as long and/or repetitive questionnaires can be detrimental to user experience, which leads us to investigate the computation of an intelligent questionnaire for a prediction task. Given time and budget constraints (maximum q questions asked), this questionnaire will select adaptively the question sequence based on answers already given. Several use-cases with increased user and customer experience are given. The problem is framed as a Markov Decision Process and solved numerically with approximate dynamic programming, exploiting the hierarchical and episodic structure of the problem. The approach, evaluated on toy models and classic supervised learning datasets, outperforms two baselines: a decision tree with budget constraint and a model with q best features systematically asked. The online problem, quite critical for deployment seems to pose no particular issue, under the right exploration strategy. This setting is quite flexible and can incorporate easily initial available data and grouped questions.","PeriodicalId":37105,"journal":{"name":"i-com","volume":"12 1","pages":"227 - 237"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-com","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/icom-2020-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Inefficient interaction such as long and/or repetitive questionnaires can be detrimental to user experience, which leads us to investigate the computation of an intelligent questionnaire for a prediction task. Given time and budget constraints (maximum q questions asked), this questionnaire will select adaptively the question sequence based on answers already given. Several use-cases with increased user and customer experience are given. The problem is framed as a Markov Decision Process and solved numerically with approximate dynamic programming, exploiting the hierarchical and episodic structure of the problem. The approach, evaluated on toy models and classic supervised learning datasets, outperforms two baselines: a decision tree with budget constraint and a model with q best features systematically asked. The online problem, quite critical for deployment seems to pose no particular issue, under the right exploration strategy. This setting is quite flexible and can incorporate easily initial available data and grouped questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用近似动态规划的智能问卷
低效率的交互,如冗长和/或重复的问卷,可能会损害用户体验,这导致我们研究智能问卷的计算预测任务。给定时间和预算限制(最多问q个问题),该问卷将根据已经给出的答案自适应地选择问题顺序。给出了几个增加用户和客户体验的用例。该问题被构建为一个马尔可夫决策过程,并利用问题的分层和情景结构,用近似动态规划进行数值求解。该方法在玩具模型和经典监督学习数据集上进行了评估,优于两个基线:具有预算约束的决策树和具有q个最佳特征的模型。在正确的勘探策略下,对部署至关重要的在线问题似乎没有什么特别的问题。这种设置非常灵活,可以很容易地合并初始可用数据和分组问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
i-com
i-com Social Sciences-Communication
CiteScore
3.80
自引率
0.00%
发文量
24
期刊最新文献
Social anthropology 4.0 The future of interactive information radiators for knowledge workers The future of HCI – editorial Towards new realities: implications of personalized online layers in our daily lives Broadening the mind: how emerging neurotechnology is reshaping HCI and interactive system design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1