{"title":"A flexible gripper with a wide-range variable stiffness structure based on shape memory alloy","authors":"Canjun Yang, Weitao Wu, Xin Wu, Jifei Zhou, Zhangpeng Tu, Mingwei Lin, Sheng Zhang","doi":"10.1108/ir-12-2021-0286","DOIUrl":null,"url":null,"abstract":"\nPurpose\nVariable stiffness structure can significantly improve the interactive capabilities of grippers. Shape memory alloys have become a popular option for materials with variable stiffness structures. However, its variable stiffness range is limited by its stiffness in two phases. The purpose of this paper is to enhance the manipulation capabilities of tendon-driven flexible grippers by designing a wide-range variable stiffness structure.\n\n\nDesign/methodology/approach\nConstitutive models of shape memory alloy and mechanical models are used to analyze the performance of the variable stiffness structure. A separated solution was used to combine the tendon-driven gripper and the variable stiffness structure. The feed-forward control algorithm is used to enhance the control stability of the variable stiffness structure.\n\n\nFindings\nThe stiffness variable capability of the proposed variable stiffness structure is verified by experiments. The stability of the feedback control algorithm was verified by sinusoidal tracking experiments. The variable stiffness range of 8.41 times of the flexible gripper was tested experimentally. The interaction capability of the variable stiffness flexible gripper is verified by the object grasping experiments.\n\n\nOriginality/value\nA new wide-range variable stiffness structure is proposed and validated. The new variable stiffness structure has a larger range of stiffness variation and better control stability. The new flexible structure can be applied to conventional grippers to help them gain stiffness variable capability and improve their interaction ability.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-12-2021-0286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Variable stiffness structure can significantly improve the interactive capabilities of grippers. Shape memory alloys have become a popular option for materials with variable stiffness structures. However, its variable stiffness range is limited by its stiffness in two phases. The purpose of this paper is to enhance the manipulation capabilities of tendon-driven flexible grippers by designing a wide-range variable stiffness structure.
Design/methodology/approach
Constitutive models of shape memory alloy and mechanical models are used to analyze the performance of the variable stiffness structure. A separated solution was used to combine the tendon-driven gripper and the variable stiffness structure. The feed-forward control algorithm is used to enhance the control stability of the variable stiffness structure.
Findings
The stiffness variable capability of the proposed variable stiffness structure is verified by experiments. The stability of the feedback control algorithm was verified by sinusoidal tracking experiments. The variable stiffness range of 8.41 times of the flexible gripper was tested experimentally. The interaction capability of the variable stiffness flexible gripper is verified by the object grasping experiments.
Originality/value
A new wide-range variable stiffness structure is proposed and validated. The new variable stiffness structure has a larger range of stiffness variation and better control stability. The new flexible structure can be applied to conventional grippers to help them gain stiffness variable capability and improve their interaction ability.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.