Multi-agent architecture for optimal energy management of a smart micro-grid using a weighted hybrid BP-PSO algorithm for wind power prediction

Didi Omar Elamine, Maria Serraji, E. Nfaoui, J. Boumhidi
{"title":"Multi-agent architecture for optimal energy management of a smart micro-grid using a weighted hybrid BP-PSO algorithm for wind power prediction","authors":"Didi Omar Elamine, Maria Serraji, E. Nfaoui, J. Boumhidi","doi":"10.1504/IJTIP.2016.074228","DOIUrl":null,"url":null,"abstract":"In this paper we present a multi-agent architecture based on wind power prediction using neural network (NN), this process aims to implement smart micro-grid with different generation units like wind turbines and fuel generators. In the proposed architecture this micro-grid can exchange electricity with the main grid therefore it can buy or sell electricity. The main objective is to find the optimal policy using average wind speed prediction for the next hour in order to maximise the benefit and minimise the cost. To forecast the wind speed and taking into account the convergent speed and convergent accuracy, we propose in this paper an NN based on hybrid weighted algorithm combining back-propagation (BP) algorithm with particle swarm optimisation (PSO) algorithm referred to as W-BP-PSO. Finally, for the simulation, the Java Agent Development Framework (JADE) platform is used to implement the approach and analyse the results.","PeriodicalId":52540,"journal":{"name":"International Journal of Technology Intelligence and Planning","volume":"191 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technology Intelligence and Planning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJTIP.2016.074228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we present a multi-agent architecture based on wind power prediction using neural network (NN), this process aims to implement smart micro-grid with different generation units like wind turbines and fuel generators. In the proposed architecture this micro-grid can exchange electricity with the main grid therefore it can buy or sell electricity. The main objective is to find the optimal policy using average wind speed prediction for the next hour in order to maximise the benefit and minimise the cost. To forecast the wind speed and taking into account the convergent speed and convergent accuracy, we propose in this paper an NN based on hybrid weighted algorithm combining back-propagation (BP) algorithm with particle swarm optimisation (PSO) algorithm referred to as W-BP-PSO. Finally, for the simulation, the Java Agent Development Framework (JADE) platform is used to implement the approach and analyse the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BP-PSO加权混合算法的智能微电网最优能量管理多智能体架构风电功率预测
本文提出了一种基于神经网络(NN)的风电功率预测的多智能体结构,该过程旨在实现不同发电机组(如风力发电机和燃料发电机)的智能微电网。在提出的架构中,微电网可以与主电网交换电力,因此它可以买卖电力。主要目标是利用预测未来一小时的平均风速找到最优策略,以实现效益最大化和成本最小化。为了预测风速并兼顾收敛速度和收敛精度,本文提出了一种结合反向传播(BP)算法和粒子群优化(PSO)算法的混合加权神经网络,称为W-BP-PSO。最后,在Java Agent Development Framework (JADE)平台上进行了仿真,并对仿真结果进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Technology Intelligence and Planning
International Journal of Technology Intelligence and Planning Business, Management and Accounting-Management of Technology and Innovation
CiteScore
3.20
自引率
0.00%
发文量
2
期刊介绍: The IJTIP is a refereed journal that provides an authoritative source of information in the field of technology intelligence, technology planning, R&D resource allocation, technology controlling, technology decision-making processes and related disciplines.
期刊最新文献
All for one, or one out of many An analysis of cryptocurrency returns and technological differentiation An introduction to the new challenges and promise of I-4.0 based commercialisation in the COVID-19-induced 'low-touch economy' ecosystem Innovation research knowledge accumulation in leading actors: a bibliometric analysis approach Innovation research knowledge accumulation in leading actors: A bibliometric analysis approach Artificial Intelligence in Project Management: Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1