{"title":"Evaluation of Ground and Excited State Dipole Moments of 2(3)-tetra(tert-butylphenoxy)phthalocyaninato Zinc(II) from Solvatochromic Data","authors":"A. Ogunsipe, Patrick C. Bokolo","doi":"10.33945/sami/chemm.2019.6.6","DOIUrl":null,"url":null,"abstract":"This article presents a semi-empirical determination of ground state dipole moment (mg) and excited state dipole moment (me) of 2(3)-tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPc) using the solvatochromic shift method, which is based on the Onsager’s reaction field theory. A combined application of the Bakshiev’s equation and the Kawski-Chamma-Viallet’s equation was used to determine the ratio me/mg while the use of the molecular-microscopic solvent polarity parameter yielded the term Dm (me- mg). The dipole moment of ZnTBPc in its excited singlet state (me=4.46D) is more than twice as much as that in its ground state (mg=2.14D).These values suggest that the higher charge separation is greater in the excited state of ZnTBPc than in its ground state.","PeriodicalId":9896,"journal":{"name":"Chemical Methodologies","volume":"35 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Methodologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/sami/chemm.2019.6.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This article presents a semi-empirical determination of ground state dipole moment (mg) and excited state dipole moment (me) of 2(3)-tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPc) using the solvatochromic shift method, which is based on the Onsager’s reaction field theory. A combined application of the Bakshiev’s equation and the Kawski-Chamma-Viallet’s equation was used to determine the ratio me/mg while the use of the molecular-microscopic solvent polarity parameter yielded the term Dm (me- mg). The dipole moment of ZnTBPc in its excited singlet state (me=4.46D) is more than twice as much as that in its ground state (mg=2.14D).These values suggest that the higher charge separation is greater in the excited state of ZnTBPc than in its ground state.