Numerical study of convective heat transfer and of turbulent forced of differents Nanofluids in channel

M. Bekhti, Rachid Saim
{"title":"Numerical study of convective heat transfer and of turbulent forced of differents Nanofluids in channel","authors":"M. Bekhti, Rachid Saim","doi":"10.56556/jtie.v1i1.127","DOIUrl":null,"url":null,"abstract":"In this study, the flow field and heat transfer of differents nanofluids (AL2O3, CuO, SiO2, ZnO), turbulent forced convection in a channel. The surface of the channel is hot Th= 310 K. Simulations are carried out for constant water Prandtl number of 6.99, Reynolds numbers from 20,000, 30,000, 40,000, 50,000 to 60,000, nanoparticles volume fractions of 0, 0.01, 0.02, 0.03, 0.04 and nanoparticles diameter of 30 nm. The finite volume method and SIMPLE algorithm and k-e are utilized to solve the governing equations numerically. The numerical results showed that with enhancing Reynolds numbers and volume fractions, average Nusselt number increases.","PeriodicalId":29809,"journal":{"name":"Journal of Technology Innovations and Energy","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Innovations and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56556/jtie.v1i1.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the flow field and heat transfer of differents nanofluids (AL2O3, CuO, SiO2, ZnO), turbulent forced convection in a channel. The surface of the channel is hot Th= 310 K. Simulations are carried out for constant water Prandtl number of 6.99, Reynolds numbers from 20,000, 30,000, 40,000, 50,000 to 60,000, nanoparticles volume fractions of 0, 0.01, 0.02, 0.03, 0.04 and nanoparticles diameter of 30 nm. The finite volume method and SIMPLE algorithm and k-e are utilized to solve the governing equations numerically. The numerical results showed that with enhancing Reynolds numbers and volume fractions, average Nusselt number increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通道内不同纳米流体对流换热及湍流力的数值研究
在本研究中,不同纳米流体(AL2O3, CuO, SiO2, ZnO)的流场和换热,在通道内紊流强制对流。通道表面热Th= 310 K。在恒定水普朗特数为6.99,雷诺数为2万、3万、4万、5万~ 6万,纳米颗粒体积分数为0、0.01、0.02、0.03、0.04,纳米颗粒直径为30 nm的条件下进行了模拟。利用有限体积法、SIMPLE算法和k-e算法对控制方程进行了数值求解。数值结果表明,随着雷诺数和体积分数的增大,平均努塞尔数增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Technology Innovations and Energy
Journal of Technology Innovations and Energy Social Sciences and Management Studies-
自引率
0.00%
发文量
0
期刊介绍: Journal of Technology Innovations and Energy aims to report the latest developments and share knowledge on the various topics related to innovative technologies in energy and environment.
期刊最新文献
Cyber Security and Digital Economy: Opportunities, Growth and Challenges Performance Assessment of Affordable Solar Dehydrator for Sustainable Energy Teacher Education for National Development Using Google Meet: Issues and Prospects Digital Competence as Predictor for the Motivation to Use Artificial Intelligence Technologies among Librarians in Edo and Delta States, Nigeria Sustainable Financial Technology through Regulation Technology: The Asian Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1