dad: an R Package for Visualisation, Classification and Discrimination of Multivariate Groups Modelled by their Densities

R J. Pub Date : 2021-01-01 DOI:10.32614/rj-2021-071
R. Boumaza, Pierre Santagostini, Smail Yousfi, S. Demotes-Mainard
{"title":"dad: an R Package for Visualisation, Classification and Discrimination of Multivariate Groups Modelled by their Densities","authors":"R. Boumaza, Pierre Santagostini, Smail Yousfi, S. Demotes-Mainard","doi":"10.32614/rj-2021-071","DOIUrl":null,"url":null,"abstract":"Multidimensional scaling (MDS), hierarchical cluster analysis (HCA) and discriminant analysis (DA) are classical techniques which deal with data made of n individuals and p variables. When the individuals are divided into T groups, the R package dad associates with each group a multivariate probability density function and then carries out these techniques on the densities which are estimated by the data under consideration. These techniques are based on distance measures between densities: chi-square, Hellinger, Jeffreys, Jensen-Shannon and L p for discrete densities, Hellinger , Jeffreys, L 2 and 2-Wasserstein for Gaussian densities, and L 2 for numeric non Gaussian densities estimated by the Gaussian kernel method. Practical methods help the user to give meaning to the outputs in the context of MDS and HCA, and to look for an optimal prediction in the context of DA based on the one-leave-out misclassification ratio. Some functions for data management or basic statistics calculations on groups are annexed.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"12 1","pages":"90"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multidimensional scaling (MDS), hierarchical cluster analysis (HCA) and discriminant analysis (DA) are classical techniques which deal with data made of n individuals and p variables. When the individuals are divided into T groups, the R package dad associates with each group a multivariate probability density function and then carries out these techniques on the densities which are estimated by the data under consideration. These techniques are based on distance measures between densities: chi-square, Hellinger, Jeffreys, Jensen-Shannon and L p for discrete densities, Hellinger , Jeffreys, L 2 and 2-Wasserstein for Gaussian densities, and L 2 for numeric non Gaussian densities estimated by the Gaussian kernel method. Practical methods help the user to give meaning to the outputs in the context of MDS and HCA, and to look for an optimal prediction in the context of DA based on the one-leave-out misclassification ratio. Some functions for data management or basic statistics calculations on groups are annexed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dad:一个用其密度建模的多变量群的可视化、分类和判别的R包
多维尺度分析(MDS)、层次聚类分析(HCA)和判别分析(DA)是处理由n个个体和p个变量组成的数据的经典技术。当个体被分成T组时,R包将每个组关联一个多变量概率密度函数,然后对所考虑的数据估计的密度执行这些技术。这些技术基于密度之间的距离度量:离散密度用卡方、Hellinger、Jeffreys、Jensen-Shannon和L p,高斯密度用Hellinger、Jeffreys、l2和2- wasserstein,高斯核方法估计的数值非高斯密度用l2。实用的方法帮助用户在MDS和HCA的背景下赋予输出意义,并在DA的背景下基于一次遗漏错分类率寻找最佳预测。附件提供了一些数据管理或组的基本统计计算功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1