Asymptotically Optimal Recovery of Gaussian Sources from Noisy Stationary Mixtures: the Least-noisy Maximally-separating Solution

A. Weiss, A. Yeredor
{"title":"Asymptotically Optimal Recovery of Gaussian Sources from Noisy Stationary Mixtures: the Least-noisy Maximally-separating Solution","authors":"A. Weiss, A. Yeredor","doi":"10.1109/ICASSP.2019.8682761","DOIUrl":null,"url":null,"abstract":"We address the problem of source separation from noisy mixtures in a semi-blind scenario, with stationary, temporally-diverse Gaussian sources and known spectra. In such noisy models, a dilemma arises regarding the desired objective. On one hand, a \"maximally separating\" solution, providing the minimal attainable Interference-to-Source-Ratio (ISR), would often suffer from significant residual noise. On the other hand, optimal Minimum Mean Square Error (MMSE) estimation would yield estimates which are the \"least distorted\" versions of the true sources, often at the cost of compromised ISR. Based on Maximum Likelihood (ML) estimation of the unknown underlying model parameters, we propose two ML-based estimates of the sources. One asymptotically coincides with the MMSE estimate of the sources, whereas the other asymptotically coincides with the (unbiased) \"least-noisy maximally-separating\" solution for this model. We prove the asymptotic optimality of the latter and present the corresponding Cramér-Rao lower bound. We discuss the differences in principal properties of the proposed estimates and demonstrate them empirically using simulation results.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"46 1","pages":"5466-5470"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We address the problem of source separation from noisy mixtures in a semi-blind scenario, with stationary, temporally-diverse Gaussian sources and known spectra. In such noisy models, a dilemma arises regarding the desired objective. On one hand, a "maximally separating" solution, providing the minimal attainable Interference-to-Source-Ratio (ISR), would often suffer from significant residual noise. On the other hand, optimal Minimum Mean Square Error (MMSE) estimation would yield estimates which are the "least distorted" versions of the true sources, often at the cost of compromised ISR. Based on Maximum Likelihood (ML) estimation of the unknown underlying model parameters, we propose two ML-based estimates of the sources. One asymptotically coincides with the MMSE estimate of the sources, whereas the other asymptotically coincides with the (unbiased) "least-noisy maximally-separating" solution for this model. We prove the asymptotic optimality of the latter and present the corresponding Cramér-Rao lower bound. We discuss the differences in principal properties of the proposed estimates and demonstrate them empirically using simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯源在有噪声平稳混合中的渐近最优恢复:最小噪声最大分离解
我们解决了在半盲情况下从噪声混合物中分离源的问题,该情况具有平稳的、时间变化的高斯源和已知的光谱。在这种嘈杂的模型中,出现了一个关于期望目标的困境。一方面,提供最小干扰源比(ISR)的“最大分离”解决方案通常会受到明显的残余噪声的影响。另一方面,最佳最小均方误差(MMSE)估计将产生真实源的“最小失真”版本的估计,通常以折衷的ISR为代价。基于未知底层模型参数的最大似然(ML)估计,我们提出了两种基于ML的源估计。一个渐近地与源的MMSE估计一致,而另一个渐近地与(无偏)该模型的“最小噪声最大分离”解决方案。我们证明了后者的渐近最优性,并给出了相应的cram - rao下界。我们讨论了所提出的估计的主要性质的差异,并利用模拟结果实证地证明了它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1