{"title":"Adaptive axes-generation algorithm for 3D tubular structures","authors":"R. Swift, K. Ramaswamy, W. Higgins","doi":"10.1109/ICIP.1997.638692","DOIUrl":null,"url":null,"abstract":"Three-Dimensional (3D) radiologic images are widely used to assess the condition of thin tubular structures, such as the pulmonary airways, coronary arteries, and colon. Precise 3D central axes of these structures are needed, however, for accurate quantization. Commonly employed manual-axes identification techniques are time-consuming and error-prone. Recently proposed automated techniques do not adequately exploit the available gray-scale or anatomic structural information and they are also prone to errors. The authors propose a method for computing the precise central axes of branching structures contained in 3D images. The method is robust to data anisotropy and uses true gray-scale information. These axes can then be used for automated navigation and assessment in a virtual-endoscopic system. The authors present the application of their method to a human lung-cancer case.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"34 1","pages":"136-139 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.638692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Three-Dimensional (3D) radiologic images are widely used to assess the condition of thin tubular structures, such as the pulmonary airways, coronary arteries, and colon. Precise 3D central axes of these structures are needed, however, for accurate quantization. Commonly employed manual-axes identification techniques are time-consuming and error-prone. Recently proposed automated techniques do not adequately exploit the available gray-scale or anatomic structural information and they are also prone to errors. The authors propose a method for computing the precise central axes of branching structures contained in 3D images. The method is robust to data anisotropy and uses true gray-scale information. These axes can then be used for automated navigation and assessment in a virtual-endoscopic system. The authors present the application of their method to a human lung-cancer case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维管状结构自适应轴生成算法
三维(3D)放射图像被广泛用于评估薄管结构的状况,如肺动脉、冠状动脉和结肠。然而,为了精确量化,这些结构需要精确的三维中心轴。常用的手动轴识别技术既耗时又容易出错。最近提出的自动化技术不能充分利用现有的灰度或解剖结构信息,而且它们也容易出错。作者提出了一种计算三维图像中分支结构的精确中心轴的方法。该方法对数据的各向异性具有鲁棒性,并使用了真实的灰度信息。这些轴可以在虚拟内窥镜系统中用于自动导航和评估。作者介绍了他们的方法在人类肺癌病例中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer Analysis of Images and Patterns: 19th International Conference, CAIP 2021, Virtual Event, September 28–30, 2021, Proceedings, Part I Computer Analysis of Images and Patterns: 19th International Conference, CAIP 2021, Virtual Event, September 28–30, 2021, Proceedings, Part II Computer Analysis of Images and Patterns: CAIP 2019 International Workshops, ViMaBi and DL-UAV, Salerno, Italy, September 6, 2019, Proceedings Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part I Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1