Zhang Chuanwei , Li Xuewu , Shi Tian , Zhang Laichang
{"title":"Fabrication of Superhydrophobic Structure on 5A05 Aluminum Alloy Surface and Its Corrosion Resistance","authors":"Zhang Chuanwei , Li Xuewu , Shi Tian , Zhang Laichang","doi":"10.1016/S1875-5372(18)30221-2","DOIUrl":null,"url":null,"abstract":"<div><p>This work developed a simple and low-cost method to achieve superior superhydrophobicity and corrosion resistance of 5A05 Al alloy. The microscale wrinkles covered with nanoscale craters were prepared by a one-step wire electrical discharge machining process. Meanwhile, the wettability and corrosion resistance of the as-prepared structures were investigated after the low-surface-energy modification. The results show that the modified surface exhibits excellent superhydrophobicity with a water contact angle (CA) of 152.7° and a rolling angle (RA) of 7.1°. Furthermore, its corrosion resistance was assessed by electrochemical tests. Ultimately, owing to the trapped air in micro-nano structures, the solid-air-liquid interface helps to resist seawater penetration on the superhydrophobic surface and significantly enhances its corrosion resistance.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 10","pages":"Pages 2980-2985"},"PeriodicalIF":0.6000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30221-2","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537218302212","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
This work developed a simple and low-cost method to achieve superior superhydrophobicity and corrosion resistance of 5A05 Al alloy. The microscale wrinkles covered with nanoscale craters were prepared by a one-step wire electrical discharge machining process. Meanwhile, the wettability and corrosion resistance of the as-prepared structures were investigated after the low-surface-energy modification. The results show that the modified surface exhibits excellent superhydrophobicity with a water contact angle (CA) of 152.7° and a rolling angle (RA) of 7.1°. Furthermore, its corrosion resistance was assessed by electrochemical tests. Ultimately, owing to the trapped air in micro-nano structures, the solid-air-liquid interface helps to resist seawater penetration on the superhydrophobic surface and significantly enhances its corrosion resistance.