Wear assessment model for cylinder liner of internal combustion engine under fuzzy uncertainty

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Mechanics & Industry Pub Date : 2021-01-01 DOI:10.1051/MECA/2021028
Jianxiong Kang, Yanjun Lu, Hongbo Luo, Jie Li, Yutao Hou, Yongfang Zhang
{"title":"Wear assessment model for cylinder liner of internal combustion engine under fuzzy uncertainty","authors":"Jianxiong Kang, Yanjun Lu, Hongbo Luo, Jie Li, Yutao Hou, Yongfang Zhang","doi":"10.1051/MECA/2021028","DOIUrl":null,"url":null,"abstract":"The wear of the piston ring-cylinder system is inevitable in the operation of the internal combustion engines (ICEs). If wear exceeds the maximum, the piston ring-cylinder system will be failure. A novel wear assessment model is proposed based on the support vector regression, and the fuzzy uncertainty is modeled to describe the random behavior under small sample. To verify the proposed model, the sample data of cylinder liner wear is applied. For best results, the particle swarm optimization (PSO) algorithm is used to optimize the model parameters. A back propagation neural network (BPNN) is employed to verify the effectiveness of the proposed model. The results show that the novel support vector regression has better prediction accuracy than other methods for cylinder wear in this paper, the proposed model can evaluate the cylinder liner wear of the ICEs effectively. The work provides a technical support for evaluating the service performance of the piston ring-cylinder liner and a reference for regular maintenance of the ships.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/MECA/2021028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

Abstract

The wear of the piston ring-cylinder system is inevitable in the operation of the internal combustion engines (ICEs). If wear exceeds the maximum, the piston ring-cylinder system will be failure. A novel wear assessment model is proposed based on the support vector regression, and the fuzzy uncertainty is modeled to describe the random behavior under small sample. To verify the proposed model, the sample data of cylinder liner wear is applied. For best results, the particle swarm optimization (PSO) algorithm is used to optimize the model parameters. A back propagation neural network (BPNN) is employed to verify the effectiveness of the proposed model. The results show that the novel support vector regression has better prediction accuracy than other methods for cylinder wear in this paper, the proposed model can evaluate the cylinder liner wear of the ICEs effectively. The work provides a technical support for evaluating the service performance of the piston ring-cylinder liner and a reference for regular maintenance of the ships.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊不确定条件下内燃机缸套磨损评估模型
内燃机在运行过程中,活塞环-气缸系统的磨损是不可避免的。如果磨损超过最大值,活塞环-缸系统就会失效。提出了一种基于支持向量回归的新型磨损评估模型,通过模糊不确定性模型来描述小样本下的随机行为。为了验证所提出的模型,应用了气缸套磨损的样本数据。为了获得最佳效果,采用粒子群优化算法对模型参数进行优化。利用反向传播神经网络(BPNN)验证了该模型的有效性。结果表明,本文提出的支持向量回归模型比其他方法具有更好的缸套磨损预测精度,能有效地评估内燃机缸套磨损情况。为活塞环-缸套的使用性能评估提供了技术支持,并为船舶的定期维修提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
期刊最新文献
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white Analyzing the influence of lifter design and ball mill speed on grinding performance, particle behavior and contact forces A neural network-based data-driven local modeling of spotwelded plates under impact Multi-objective shape optimization of developable Bézier-like surfaces using non-dominated sorting genetic algorithm Experimental quantification of heat haze errors in stereo-DIC displacements: Application to thermoplastics thermoforming temperature range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1