H. Rassouli, Ali Sayadmanesh, Siamak Rezaeiani, Z. Ghezelayagh, M. Gharaati, Tahamtani Yaser
{"title":"An Easy and Fast Method for Production of Chinese Hamster Ovary Cell Line Expressing and Secreting Human Recombinant Activin A","authors":"H. Rassouli, Ali Sayadmanesh, Siamak Rezaeiani, Z. Ghezelayagh, M. Gharaati, Tahamtani Yaser","doi":"10.22074/cellj.2020.6580","DOIUrl":null,"url":null,"abstract":"Objective Growth factors are key elements of embryonic stem cell (ESC) research. Cell line development in eukaryotes is a time-consuming procedure which usually takes 12-18 months. Here, we report an easy and fast method with which production of Chinese hamster ovary (CHO) cells that express and secrete recombinant Activin A, as a major growth factor in endo/mesoderm differentiation of embryonic stem cells is achieved within 3-4 weeks. Materials and Methods In this experimental study, we cloned human Activin A into the pDONR/Zeo gateway entry vector using the BP reaction. Activin A was subcloned next into the pLIX_403 and pLenti6.3/TO/V5-DEST destination vectors by the LR reaction. The result was the production of constructs with which 293T cells were finally transfected for virus production. CHO cells were transduced using viral particles to produce a cell line that secretes the His6- Activin A fusion protein. Results We developed a quick protocol which saves up to 3-4 weeks of time for producing recombinant proteins in CHO cells. The recombinant cell line produced 90 mg/L of functional Activin A measured in human ESC line Royan H5 (RH5), during in vitro differentiation into meso-endoderm and definitive endoderm. Conclusion Our results showed no significant differences in functionality between commercial Activin A and the one produced using our novel protocol. This approach can be easily used for producing recombinant proteins in CHO.","PeriodicalId":9692,"journal":{"name":"Cell Journal (Yakhteh)","volume":"72 1","pages":"140 - 148"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Journal (Yakhteh)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22074/cellj.2020.6580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective Growth factors are key elements of embryonic stem cell (ESC) research. Cell line development in eukaryotes is a time-consuming procedure which usually takes 12-18 months. Here, we report an easy and fast method with which production of Chinese hamster ovary (CHO) cells that express and secrete recombinant Activin A, as a major growth factor in endo/mesoderm differentiation of embryonic stem cells is achieved within 3-4 weeks. Materials and Methods In this experimental study, we cloned human Activin A into the pDONR/Zeo gateway entry vector using the BP reaction. Activin A was subcloned next into the pLIX_403 and pLenti6.3/TO/V5-DEST destination vectors by the LR reaction. The result was the production of constructs with which 293T cells were finally transfected for virus production. CHO cells were transduced using viral particles to produce a cell line that secretes the His6- Activin A fusion protein. Results We developed a quick protocol which saves up to 3-4 weeks of time for producing recombinant proteins in CHO cells. The recombinant cell line produced 90 mg/L of functional Activin A measured in human ESC line Royan H5 (RH5), during in vitro differentiation into meso-endoderm and definitive endoderm. Conclusion Our results showed no significant differences in functionality between commercial Activin A and the one produced using our novel protocol. This approach can be easily used for producing recombinant proteins in CHO.