{"title":"Segmentation of Brain Tumors Using Three-Dimensional Convolutional Neural Network on MRI Images 3D MedImg-CNN","authors":"A. Kharrat, M. Neji","doi":"10.4018/ijcini.20211001.oa4","DOIUrl":null,"url":null,"abstract":"We consider the problem of fully automatic brain tumor segmentation in MR images containing glioblastomas. We propose a three Dimensional Convolutional Neural Network (3D MedImg-CNN) approach which achieves high performance while being extremely efficient, a balance that existing methods have struggled to achieve. Our 3D MedImg-CNN is formed directly on the raw image modalities and thus learn a characteristic representation directly from the data. We propose a new cascaded architecture with two pathways that each model normal details in tumors. Fully exploiting the convolutional nature of our model also allows us to segment a complete cerebral image in one minute. The performance of the proposed 3D MedImg-CNN with CNN segmentation method is computed using dice similarity coefficient (DSC). In experiments on the 2013, 2015 and 2017 BraTS challenges datasets; we unveil that our approach is among the most powerful methods in the literature, while also being very effective.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20211001.oa4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the problem of fully automatic brain tumor segmentation in MR images containing glioblastomas. We propose a three Dimensional Convolutional Neural Network (3D MedImg-CNN) approach which achieves high performance while being extremely efficient, a balance that existing methods have struggled to achieve. Our 3D MedImg-CNN is formed directly on the raw image modalities and thus learn a characteristic representation directly from the data. We propose a new cascaded architecture with two pathways that each model normal details in tumors. Fully exploiting the convolutional nature of our model also allows us to segment a complete cerebral image in one minute. The performance of the proposed 3D MedImg-CNN with CNN segmentation method is computed using dice similarity coefficient (DSC). In experiments on the 2013, 2015 and 2017 BraTS challenges datasets; we unveil that our approach is among the most powerful methods in the literature, while also being very effective.