Degradable biomaterials with elastomeric characteristics and drug-carrier function

B.I Dahiyat, E.M Posadas, S Hirosue, E Hostin, K.W Leong
{"title":"Degradable biomaterials with elastomeric characteristics and drug-carrier function","authors":"B.I Dahiyat,&nbsp;E.M Posadas,&nbsp;S Hirosue,&nbsp;E Hostin,&nbsp;K.W Leong","doi":"10.1016/0923-1137(95)91297-P","DOIUrl":null,"url":null,"abstract":"<div><p>The design of drug-carrying elastomers based on poly(phosphoester-urethanes) (PPUs) is presented. Bis(2-hydroxyethyl)phosphite and bis(6-hydroxyhexyl)phosphite were used as the chain extenders and 1,4-butane diisocyanate was the basis of the hard segment. The labile phosphoester linkage in the backbone of the PPU confers biodegradability on the polymer. Using the reactive phosphite side chain in the PPUs, <em>p</em>-aminosalicylic acid and benzocaine were attached pendantly to the polymer with or without a spacer. In vitro release of both drugs was complete in several hours. In contrast, ethambutol incorporated into the backbone of the polymer was released in over 10 days. Preliminary cytotoxicity of the drug-carrier to a macrophage cell line was also assessed.</p></div>","PeriodicalId":20864,"journal":{"name":"Reactive Polymers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0923-1137(95)91297-P","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive Polymers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092311379591297P","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The design of drug-carrying elastomers based on poly(phosphoester-urethanes) (PPUs) is presented. Bis(2-hydroxyethyl)phosphite and bis(6-hydroxyhexyl)phosphite were used as the chain extenders and 1,4-butane diisocyanate was the basis of the hard segment. The labile phosphoester linkage in the backbone of the PPU confers biodegradability on the polymer. Using the reactive phosphite side chain in the PPUs, p-aminosalicylic acid and benzocaine were attached pendantly to the polymer with or without a spacer. In vitro release of both drugs was complete in several hours. In contrast, ethambutol incorporated into the backbone of the polymer was released in over 10 days. Preliminary cytotoxicity of the drug-carrier to a macrophage cell line was also assessed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有弹性体特性和药物载体功能的可降解生物材料
介绍了基于聚磷酸酯-聚氨酯(PPUs)的载药弹性体的设计。以二(2-羟基乙基)亚磷酸酯和二(6-羟基己基)亚磷酸酯为扩链剂,1,4-丁烷二异氰酸酯为硬段的基础。PPU主链上不稳定的磷酸酯键赋予聚合物可生物降解性。利用ppu中的活性亚磷酸酯侧链,对氨基水杨酸和苯佐卡因在有或没有间隔剂的情况下悬垂地附着在聚合物上。两种药物的体外释放在几个小时内完成。相比之下,加入到聚合物骨架中的乙胺丁醇在10多天内被释放出来。初步评估了药物载体对巨噬细胞系的细胞毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index News section Preface Introduction Subject index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1