VLS-grown silicon nanowires — Dopant deactivation and tunnel FETs

M. Bjork, K. Moselund, H. Schmid, H. Ghoneim, S. Karg, E. Lortscher, J. Knoch, W. Riess, H. Riel
{"title":"VLS-grown silicon nanowires — Dopant deactivation and tunnel FETs","authors":"M. Bjork, K. Moselund, H. Schmid, H. Ghoneim, S. Karg, E. Lortscher, J. Knoch, W. Riess, H. Riel","doi":"10.1109/SNW.2010.5562587","DOIUrl":null,"url":null,"abstract":"Today, the continued miniaturization of field effect transistors (FETs) results in major scaling issues that curtail further voltage reduction. The resultant increase in power consumption density limits the overall performance. Therefore, alternative materials and devices are required that support steep sub-threshold slopes and low-voltage operation. The tunnel FET (TFET) is regarded as the most promising candidate because it is based on gate-controlled band-to-band tunneling in a p-i-n+ structure and thus can break the 60 mV/dec limit of conventional FETs [1]. Implementing the TFET principle in the nanowire (NW) geometry provides optimum electrostatic control. Here we demonstrate controlled in-situ doping of silicon (Si) NWs, the effect of scaling on the active number of doping atoms in the NW and the implementation of a Si NW TFET.","PeriodicalId":6433,"journal":{"name":"2010 Silicon Nanoelectronics Workshop","volume":"40 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Silicon Nanoelectronics Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2010.5562587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Today, the continued miniaturization of field effect transistors (FETs) results in major scaling issues that curtail further voltage reduction. The resultant increase in power consumption density limits the overall performance. Therefore, alternative materials and devices are required that support steep sub-threshold slopes and low-voltage operation. The tunnel FET (TFET) is regarded as the most promising candidate because it is based on gate-controlled band-to-band tunneling in a p-i-n+ structure and thus can break the 60 mV/dec limit of conventional FETs [1]. Implementing the TFET principle in the nanowire (NW) geometry provides optimum electrostatic control. Here we demonstrate controlled in-situ doping of silicon (Si) NWs, the effect of scaling on the active number of doping atoms in the NW and the implementation of a Si NW TFET.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
vls生长的硅纳米线-掺杂失活和隧道场效应管
今天,场效应晶体管(fet)的持续小型化导致了主要的缩放问题,限制了进一步的电压降低。由此导致的功率消耗密度的增加限制了整体性能。因此,需要替代材料和设备来支持陡峭的亚阈值斜坡和低压运行。隧道场效应管(TFET)被认为是最有希望的候选者,因为它基于p-i-n+结构的栅极控制带对带隧道,因此可以突破传统场效应管的60 mV/dec限制[1]。在纳米线(NW)几何结构中实现TFET原理提供了最佳的静电控制。在这里,我们展示了可控的原位掺杂硅(Si) NWs,缩放对NW中掺杂原子活性数的影响以及Si NW TFET的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
9 Steep Slope Transistors Frontmatter 5 Metal–Oxide–Semiconductor Field-Effect Transistors A Color Map for 2D Materials 6 Device Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1