Cost effective and “high” power conversion efficiency ultra-thin film GaAs solar cell

A. Bhatnagar, V. Janyani
{"title":"Cost effective and “high” power conversion efficiency ultra-thin film GaAs solar cell","authors":"A. Bhatnagar, V. Janyani","doi":"10.1109/COMPTELIX.2017.8004024","DOIUrl":null,"url":null,"abstract":"In this paper we have designed and optically simulated a cheaper and flexible ultra-thin film GaAs solar cell having active layer thickness of ∼0.5 micron, even less than the GaAs cell with highest conversion efficiency (∼3 micron). The structure consists of an anti-reflection coating (ARC), n-type and p-type GaAs active layers. A combination of back reflecting pyramidal structure of Aluminium-Titanium alloy (AlTi) and a photonic crystal (Ge rods in SiO2) is used in order to increase the optical path length of the incident light and reflect back the desired portion of the incident spectrum back to the active region to enhance absorption. The cell structure is simulated using FDTD algorithm. Analysis of optical characteristics is done and found that the efficiency has crossed the Shockley Queisser (SQ) limit by ∼6%. Reduction in the thickness of active layer and the use of Aluminium-Titanium as textured back contact has made the cell cost effective.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"24 1","pages":"516-520"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8004024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we have designed and optically simulated a cheaper and flexible ultra-thin film GaAs solar cell having active layer thickness of ∼0.5 micron, even less than the GaAs cell with highest conversion efficiency (∼3 micron). The structure consists of an anti-reflection coating (ARC), n-type and p-type GaAs active layers. A combination of back reflecting pyramidal structure of Aluminium-Titanium alloy (AlTi) and a photonic crystal (Ge rods in SiO2) is used in order to increase the optical path length of the incident light and reflect back the desired portion of the incident spectrum back to the active region to enhance absorption. The cell structure is simulated using FDTD algorithm. Analysis of optical characteristics is done and found that the efficiency has crossed the Shockley Queisser (SQ) limit by ∼6%. Reduction in the thickness of active layer and the use of Aluminium-Titanium as textured back contact has made the cell cost effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有成本效益和“高”功率转换效率的超薄膜砷化镓太阳能电池
在本文中,我们设计并光学模拟了一种更便宜且柔性的超薄薄膜砷化镓太阳能电池,其活性层厚度为~ 0.5微米,甚至小于具有最高转换效率的砷化镓电池(~ 3微米)。该结构由抗反射涂层(ARC)、n型和p型GaAs活性层组成。利用铝钛合金(AlTi)的反反射锥体结构与光子晶体(SiO2中的Ge棒)相结合,增加入射光的光程长度,并将入射光谱的所需部分反射回有源区域,以增强吸收。利用时域有限差分算法对单元结构进行了仿真。对光学特性进行了分析,发现效率已超过肖克利奎瑟(SQ)极限约6%。减少活性层的厚度和使用铝钛作为纹理背触点,使电池具有成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of mental tasks using S-transform based fractal features Gauge Theory and spontaneous breaking of symmetry in superconductors Stable type-2 fuzzy logic control of TCSC to improve damping of power systems An analysis on broadband SHG using TIR-QPM in a multi-tapered slab of ZnSe in mid-IR region Analytical study of SINR for OFDMA Uplink in presence of Transceiver Phase Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1