J. V. Anchitaalagammai, T. Jayasankar, P. Selvaraj, Mohamed Yacin Sikkandar, M. Zakarya, M. Elhoseny, K. Shankar
{"title":"Energy Efficient Cluster-Based Optimal Resource Management in IoT Environment","authors":"J. V. Anchitaalagammai, T. Jayasankar, P. Selvaraj, Mohamed Yacin Sikkandar, M. Zakarya, M. Elhoseny, K. Shankar","doi":"10.32604/cmc.2022.017910","DOIUrl":null,"url":null,"abstract":": Internet of Things (IoT) is a technological revolution that redefined communication and computation of modern era. IoT generally refers to a network of gadgets linked via wireless network and communicates via internet. Resource management, especially energy management, is a critical issue when designing IoT devices. Several studies reported that clustering and routing are energy efficient solutions for optimal management of resources in IoT environment. In this point of view, the current study devises a new Energy-Efficient Clustering-based Routing technique for Resource Management i.e., EECBRM in IoT environment. The proposed EECBRM model has three stages namely, fuzzy logic-based clustering, Lion Whale Optimization with Tumbling (LWOT)-based routing and cluster maintenance phase. The proposed EECBRM model was validated through a series of experiments and the results were verified under several aspects. EECBRM model was compared with existing methods in terms of energy efficiency, delay, number of data transmission, and network lifetime. When simulated, in comparison with other methods, EECBRM model yielded excellent results in a significant manner. Thus, the efficiency of the proposed model is established.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"29 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.017910","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
: Internet of Things (IoT) is a technological revolution that redefined communication and computation of modern era. IoT generally refers to a network of gadgets linked via wireless network and communicates via internet. Resource management, especially energy management, is a critical issue when designing IoT devices. Several studies reported that clustering and routing are energy efficient solutions for optimal management of resources in IoT environment. In this point of view, the current study devises a new Energy-Efficient Clustering-based Routing technique for Resource Management i.e., EECBRM in IoT environment. The proposed EECBRM model has three stages namely, fuzzy logic-based clustering, Lion Whale Optimization with Tumbling (LWOT)-based routing and cluster maintenance phase. The proposed EECBRM model was validated through a series of experiments and the results were verified under several aspects. EECBRM model was compared with existing methods in terms of energy efficiency, delay, number of data transmission, and network lifetime. When simulated, in comparison with other methods, EECBRM model yielded excellent results in a significant manner. Thus, the efficiency of the proposed model is established.
期刊介绍:
This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials.
Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.