Scaling behaviour of corrugated sandwich panels under impact load

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL Journal of Sandwich Structures & Materials Pub Date : 2023-08-24 DOI:10.1177/10996362231196540
Y. Cheng, Kun Liu, Z. Wang
{"title":"Scaling behaviour of corrugated sandwich panels under impact load","authors":"Y. Cheng, Kun Liu, Z. Wang","doi":"10.1177/10996362231196540","DOIUrl":null,"url":null,"abstract":"The majority of the experimental studies investigating the dynamic response of sandwich panels are conducted using small-scale models that cannot be applied directly in the marine industry. In this study, a velocity–stress–mass (VSG) method based on the Johnson–Cook equation (VSG–JC) is derived to determine the relationship between a full-size structure (prototype) and its scaled-down model. The developed methodology is verified using theoretical and numerical solutions for an impact-loaded beam and plate, respectively. Theoretically, the model response can explicitly predict the behavior of a full-size structure using the VSG–JC method, whereas the strain rate cannot be obtained precisely via numerical simulation; hence, the corrected results for the model deviate slightly from the prototype results. Additionally, this method is compared with the VSG method based on the Cowper–Symonds equation (VSG–CS) in the numerical simulation of sandwich panels. The comparison results indicates that the VSG–JC method is more accurate than the VSG–CS method. The dynamic response of the scaled models predicted using the VSG–JC method coincides with that of the prototype, thus demonstrating that the VSG–JC method is valid for evaluating the scaling behavior of sandwich structures subjected to impact loads.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":"22 1","pages":"846 - 865"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362231196540","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of the experimental studies investigating the dynamic response of sandwich panels are conducted using small-scale models that cannot be applied directly in the marine industry. In this study, a velocity–stress–mass (VSG) method based on the Johnson–Cook equation (VSG–JC) is derived to determine the relationship between a full-size structure (prototype) and its scaled-down model. The developed methodology is verified using theoretical and numerical solutions for an impact-loaded beam and plate, respectively. Theoretically, the model response can explicitly predict the behavior of a full-size structure using the VSG–JC method, whereas the strain rate cannot be obtained precisely via numerical simulation; hence, the corrected results for the model deviate slightly from the prototype results. Additionally, this method is compared with the VSG method based on the Cowper–Symonds equation (VSG–CS) in the numerical simulation of sandwich panels. The comparison results indicates that the VSG–JC method is more accurate than the VSG–CS method. The dynamic response of the scaled models predicted using the VSG–JC method coincides with that of the prototype, thus demonstrating that the VSG–JC method is valid for evaluating the scaling behavior of sandwich structures subjected to impact loads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冲击载荷作用下波纹夹层板的结垢特性
大多数研究夹层板动态响应的实验研究都是使用小规模模型进行的,这些模型不能直接应用于海洋工业。本文建立了基于Johnson-Cook方程(VSG - jc)的速度-应力-质量(VSG)方法,用于确定全尺寸结构(原型)与其缩尺模型之间的关系。所开发的方法分别使用理论和数值解对冲击加载梁和板进行了验证。从理论上讲,VSG-JC方法可以明确地预测全尺寸结构的行为,而通过数值模拟无法精确地获得应变率;因此,模型的修正结果与原型结果略有偏差。并将该方法与基于Cowper-Symonds方程(VSG - cs)的VSG方法在夹芯板数值模拟中进行了比较。对比结果表明,VSG-JC法比VSG-CS法更准确。利用VSG-JC方法预测的模型的动态响应与原型的动态响应吻合,证明了VSG-JC方法用于评价夹层结构在冲击载荷作用下的标化行为是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fundamental mechanical relations of open-cell metal foam composite materials with reticular porous structure Bond strength empirical-mathematical equation and optimization of Al1050/AISI304 bilayer sheets fabricated by cold roll bonding method Flexural and impact response of sandwich panels with Nomex honeycomb core and hybrid fiber composite skins Global buckling response of sandwich panels with additively manufactured lattice cores Numerical study on structured sandwich panels exposed to spherical air explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1