{"title":"Collating multisource geospatial data for vegetation detection using Bayesian network-a case study of Yellow River Delta","authors":"Dingyuan Mo, Liangju Yu, Meng Gao","doi":"10.1504/IJCSE.2017.087407","DOIUrl":null,"url":null,"abstract":"Multisource geospatial data contains a lot of information that can be used for environment assessment and management. In this paper, four environmental indicators representing typical human activities in Yellow River Delta, China are extracted from multisource geospatial data. By analysing the causal relationship between these human-related indicators and NDVI, a Bayesian network (BN) model is developed. Part of the raster data pre-processed using GIS is used for training the BN model, and the other data is used for model testing. Sensitivity analysis and performance assessment showed that the BN model was good enough to reveal the impacts of human activities on land vegetation. With the trained BN model, the vegetation change under three different scenarios was also predicted. The results showed that multisource geospatial data could be successfully collated using the GIS-BN framework for vegetation detection.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"22 1","pages":"277-284"},"PeriodicalIF":1.4000,"publicationDate":"2017-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2017.087407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Multisource geospatial data contains a lot of information that can be used for environment assessment and management. In this paper, four environmental indicators representing typical human activities in Yellow River Delta, China are extracted from multisource geospatial data. By analysing the causal relationship between these human-related indicators and NDVI, a Bayesian network (BN) model is developed. Part of the raster data pre-processed using GIS is used for training the BN model, and the other data is used for model testing. Sensitivity analysis and performance assessment showed that the BN model was good enough to reveal the impacts of human activities on land vegetation. With the trained BN model, the vegetation change under three different scenarios was also predicted. The results showed that multisource geospatial data could be successfully collated using the GIS-BN framework for vegetation detection.
期刊介绍:
Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.