Estimation of the consumer electronics capacitance for harmonic resonance studies by a non-invasive measurement method

T. Busatto, V. Ravindran, A. Larsson, M. Bollen
{"title":"Estimation of the consumer electronics capacitance for harmonic resonance studies by a non-invasive measurement method","authors":"T. Busatto, V. Ravindran, A. Larsson, M. Bollen","doi":"10.1109/ICHQP.2018.8378869","DOIUrl":null,"url":null,"abstract":"Harmonic resonances in distribution systems are mainly between network inductances and shunt capacitances from capacitor banks and consumer loads. In this paper, particular attention is devoted to the evaluation of capacitances from domestic equipment, serving as a reference for resonance frequency studies. The assessment is performed by simulation and measurements of common low power electronic loads. From the analysis of EMI filters topologies used in AC/DC converters, a non-invasive capacitance measurement estimation method is presented. The method is verified after correlating capacitances with the resonance frequencies obtained from a frequency sweep method. From experimental measurements, the results show that the equivalent shunt capacitances for a set of 24 LED lamps are between 10 and 135 nF.","PeriodicalId":6506,"journal":{"name":"2018 18th International Conference on Harmonics and Quality of Power (ICHQP)","volume":"39 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th International Conference on Harmonics and Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP.2018.8378869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Harmonic resonances in distribution systems are mainly between network inductances and shunt capacitances from capacitor banks and consumer loads. In this paper, particular attention is devoted to the evaluation of capacitances from domestic equipment, serving as a reference for resonance frequency studies. The assessment is performed by simulation and measurements of common low power electronic loads. From the analysis of EMI filters topologies used in AC/DC converters, a non-invasive capacitance measurement estimation method is presented. The method is verified after correlating capacitances with the resonance frequencies obtained from a frequency sweep method. From experimental measurements, the results show that the equivalent shunt capacitances for a set of 24 LED lamps are between 10 and 135 nF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非侵入式测量方法估计用于谐波共振研究的消费类电子产品电容
配电系统中的谐波谐振主要发生在网络电感和电容器组及用户负载的并联电容之间。本文重点介绍了国产设备电容的评定,为谐振频率研究提供参考。通过对常见的低功率电子负载的仿真和测量进行了评估。通过对交直流变换器中电磁干扰滤波器拓扑结构的分析,提出了一种无创电容测量估计方法。将电容与从扫频法获得的谐振频率相关联后,验证了该方法。实验测量结果表明,一组24个LED灯的等效并联电容在10 ~ 135nf之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive segmentation and machine learning based potential DR capacity analysis Harmonic resonance risk of massive ultra fast charging station grid integration A general process recommended by CIGRE WG C4.27 for benchmarking power quality performance in transmission systems On the limitations of harmonic modeling with measured inputs - a case study Analysis of replacement from disconnecting switch to circuit breaker for 500 kV line shunt reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1