J.A. Cecilia , E. Vilarrasa-García , N. Chouikhi , R. Morales-Ospino , S. Besghaier , M. Chlendi , M. Bagane , M. Bastos-Neto , D.C.S. Azevedo , E. Rodríguez-Castellón
{"title":"Activated carbons synthesized from sucrose using porous clay heterostructures as template for CO2 adsorption","authors":"J.A. Cecilia , E. Vilarrasa-García , N. Chouikhi , R. Morales-Ospino , S. Besghaier , M. Chlendi , M. Bagane , M. Bastos-Neto , D.C.S. Azevedo , E. Rodríguez-Castellón","doi":"10.1016/j.scca.2022.100006","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we have analyzed the synthesis of microporous materials using sucrose as carbon source and porous clay heterostructures as template to promote a hierarchical organization of pores, which is a novelty in the synthesis of carbonaceous materials. The study comprises the evaluation of the synthesis conditions such as the addition of a base (KOH) or the variation of the pyrolysis temperature (600, 750 and 900 °C). The studied materials were characterized via X ray diffraction, Transmission Electron Microscopy, gas adsorption, Attenuated Total Reflectance, <em>Raman spectroscopy</em> and X-ray Photoelectron Spectroscopy. Additionally, the performance of the synthesized adsorbents in terms of CO<sub>2</sub> uptake at three temperatures (0, 25 and 45 °C) was assessed and compared with similar materials reported in the literature. The results suggested by and large that the use of the base and the highest pyrolysis temperature (900 °C) during the synthesis enhances the CO<sub>2</sub> adsorption at the different evaluated temperatures. Nonetheless, it is at the lowest pyrolysis temperature i.e., 600 °C, where one can observe a more accentuated superior performance of the material synthesized with base than that obtained without the addition of KOH.</p></div>","PeriodicalId":101195,"journal":{"name":"Sustainable Chemistry for Climate Action","volume":"1 ","pages":"Article 100006"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772826922000062/pdfft?md5=6ca20c9c7cff7a349608550f1c16d9b0&pid=1-s2.0-S2772826922000062-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for Climate Action","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772826922000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work we have analyzed the synthesis of microporous materials using sucrose as carbon source and porous clay heterostructures as template to promote a hierarchical organization of pores, which is a novelty in the synthesis of carbonaceous materials. The study comprises the evaluation of the synthesis conditions such as the addition of a base (KOH) or the variation of the pyrolysis temperature (600, 750 and 900 °C). The studied materials were characterized via X ray diffraction, Transmission Electron Microscopy, gas adsorption, Attenuated Total Reflectance, Raman spectroscopy and X-ray Photoelectron Spectroscopy. Additionally, the performance of the synthesized adsorbents in terms of CO2 uptake at three temperatures (0, 25 and 45 °C) was assessed and compared with similar materials reported in the literature. The results suggested by and large that the use of the base and the highest pyrolysis temperature (900 °C) during the synthesis enhances the CO2 adsorption at the different evaluated temperatures. Nonetheless, it is at the lowest pyrolysis temperature i.e., 600 °C, where one can observe a more accentuated superior performance of the material synthesized with base than that obtained without the addition of KOH.