Measuring Kinetics in Flow Using Isoperibolic Flow Calorimetry

Reactions Pub Date : 2022-10-12 DOI:10.3390/reactions3040035
T. Frede, Moritz Greive, N. Kockmann
{"title":"Measuring Kinetics in Flow Using Isoperibolic Flow Calorimetry","authors":"T. Frede, Moritz Greive, N. Kockmann","doi":"10.3390/reactions3040035","DOIUrl":null,"url":null,"abstract":"Continuous flow calorimeters are a promising tool in process development and safety engineering, particularly for flow chemistry applications. An isoperibolic flow calorimeter is presented for the characterization of exothermic reactions. The calorimeter is adapted to commercially available plate microreactors made of glass and uses Seebeck elements to quantify the heat of reaction. For automation of calibration procedures and calorimetric measurements, the device is connected to a lab automation system. Reaction enthalpy of exothermic reactions is determined via an energy balance of the entire calorimeter. Characterization of reaction kinetics is carried out via a local balancing of the individual Seebeck elements without changing the experimental setup, while using the previous measurements and additional ones at higher flow rates. The calorimeter and the associated measurement procedures were tested with the oxidation of sodium thiosulfate using hydrogen peroxide. Reaction enthalpy was determined to be 594.3 ± 0.7 kJ mol−1, which is within the range of literature values.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reactions3040035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Continuous flow calorimeters are a promising tool in process development and safety engineering, particularly for flow chemistry applications. An isoperibolic flow calorimeter is presented for the characterization of exothermic reactions. The calorimeter is adapted to commercially available plate microreactors made of glass and uses Seebeck elements to quantify the heat of reaction. For automation of calibration procedures and calorimetric measurements, the device is connected to a lab automation system. Reaction enthalpy of exothermic reactions is determined via an energy balance of the entire calorimeter. Characterization of reaction kinetics is carried out via a local balancing of the individual Seebeck elements without changing the experimental setup, while using the previous measurements and additional ones at higher flow rates. The calorimeter and the associated measurement procedures were tested with the oxidation of sodium thiosulfate using hydrogen peroxide. Reaction enthalpy was determined to be 594.3 ± 0.7 kJ mol−1, which is within the range of literature values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用等循环流量量热法测量流动动力学
连续流量热计在工艺开发和安全工程中是一个很有前途的工具,特别是在流动化学应用中。提出了一种用于放热反应表征的等循环流量量热计。该量热计适用于市售的玻璃板微反应器,并使用塞贝克元素来量化反应热。为了实现校准程序和量热测量的自动化,该设备连接到实验室自动化系统。放热反应的反应焓通过整个量热计的能量平衡来确定。反应动力学的表征是在不改变实验设置的情况下通过单个塞贝克元素的局部平衡进行的,同时使用先前的测量和更高流速下的附加测量。用过氧化氢氧化硫代硫酸钠,对量热计和相关的测量程序进行了测试。测定的反应焓为594.3±0.7 kJ mol−1,在文献值范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Autocatalytic Acetylation of Crude Glycerol Using Acetic Acid: A Kinetic Model Investigation of the First Hydrogenation of LaNi5 Furfural and Levulinic Acid: Synthesis of Platform Molecules from Keggin Heteropolyacid-Catalyzed Biomass Conversion Reactions Advanced Thermogravimetric Analyses of Stem Wood and Straw Devolatilization: Torrefaction through Combustion Modeling of the Anaerobic Digestion of Biomass Produced by Agricultural Residues in Greece
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1