Improved SURF in Color Difference Scale Space for Color Image Matching

Haifeng Luo, Yue Han, J. Kan
{"title":"Improved SURF in Color Difference Scale Space for Color Image Matching","authors":"Haifeng Luo, Yue Han, J. Kan","doi":"10.46300/9106.2022.16.128","DOIUrl":null,"url":null,"abstract":"This paper presents an improved SURF (Speeded Up Robust Features) for image matching which considers color information. Firstly, a new color difference scale space is constructed based on color information to detect feature point. Then we extracted a 192-dimensional vector to describe feature point, which includes a 64-dimensional vector representing the brightness information and a 128-dimensional vector representing the color information in a color image. Finally, in the process images matching, a new weighted Murkovski distance is used to measure the distance between two descriptors. From the experiment results, we can know that, compared the other methods, the feature points detection method proposed is more robust. The matching scores and precision of our method are dominant among different methods of color image matching. Compared with SURF, the number of feature points detected by the proposed method increases by 163%, the average matching scores and matching precision increase by 16% and 15.81% respectively.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2022.16.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an improved SURF (Speeded Up Robust Features) for image matching which considers color information. Firstly, a new color difference scale space is constructed based on color information to detect feature point. Then we extracted a 192-dimensional vector to describe feature point, which includes a 64-dimensional vector representing the brightness information and a 128-dimensional vector representing the color information in a color image. Finally, in the process images matching, a new weighted Murkovski distance is used to measure the distance between two descriptors. From the experiment results, we can know that, compared the other methods, the feature points detection method proposed is more robust. The matching scores and precision of our method are dominant among different methods of color image matching. Compared with SURF, the number of feature points detected by the proposed method increases by 163%, the average matching scores and matching precision increase by 16% and 15.81% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于色差尺度空间的彩色图像匹配改进SURF
提出了一种考虑颜色信息的图像匹配改进算法SURF (accelerated Robust Features)。首先,基于颜色信息构建新的色差尺度空间进行特征点检测;然后,我们提取了一个192维的特征点描述向量,其中包括一个表示亮度信息的64维向量和一个表示彩色图像颜色信息的128维向量。最后,在图像匹配过程中,采用一种新的加权Murkovski距离来度量两个描述符之间的距离。从实验结果可以看出,与其他方法相比,所提出的特征点检测方法具有更强的鲁棒性。在不同的彩色图像匹配方法中,该方法的匹配分数和精度具有优势。与SURF相比,该方法检测到的特征点数量增加了163%,平均匹配分数和匹配精度分别提高了16%和15.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
期刊最新文献
Stochastic Machine Learning Models for Mutation Rate Analysis of Malignant Cancer Cells in Patients with Acute Lymphoblastic Leukemia Detecting Small Objects Using a Smartphone and Neon Camera Optimization of New Energy Vehicle Road Noise Problem Based on Finite Element Analysis Method Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties Distributed Generation Hosting Capacity Evaluation for Distribution Networks Considering Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1