Edge detection in gravity field of the Gheshm sedimentary basin

Q4 Earth and Planetary Sciences International Journal of Mining and Geo-Engineering Pub Date : 2013-06-01 DOI:10.22059/IJMGE.2013.50089
A. Hosseini, F. D. Ardejani, S. H. Tabatabaie, A. Hezarkhani
{"title":"Edge detection in gravity field of the Gheshm sedimentary basin","authors":"A. Hosseini, F. D. Ardejani, S. H. Tabatabaie, A. Hezarkhani","doi":"10.22059/IJMGE.2013.50089","DOIUrl":null,"url":null,"abstract":"Edge detection and edge enhancement techniques play an essential role in interpreting potential field data. This paper describes the application of various edge detection techniques to gravity data in order to delineate the edges of subsurface structures. The edge detection methods comprise analytic signal, total horizontal derivative (THDR), theta angle, tilt angle, hyperbolic of tilt angle (HTA), normalised total horizontal gradient (TDX) and normalised horizontal derivative (NTHD). The results showed that almost all filters delineated edges of anomalies successfully. However, the capability of these filters in edge detection decreased as the depth of sources increased. Of the edge enhancement filters, normalized standard deviation filter provided much better results in delineating deeper sources. The edge detection techniques were further applied on a real gravity data from the Gheshm sedimentary basin in the Persian Gulf in Iran. All filters specified a northeast-southwest structural trend. The THDR better outlined the structural morphology and trend. Moreover, it indicated the salt plugs much better than other filters. Analytic signal and THDR successfully enhanced the edges of the shorter wavelength residual structures. Normalized standard deviation (NSTD), TDX and hyperbolic of tilt angle (HTA) filters highlighted the likely fault pattern and lineaments, with a dominant northeast-southwest structural trend. This case study shows that the edge detection techniques provides valuable information for geologists and petroleum engineers to outline the horizontal location of geological sources including salt plugs and stand out buried faults, contacts and other tectonic and geological features.","PeriodicalId":36564,"journal":{"name":"International Journal of Mining and Geo-Engineering","volume":"42 1","pages":"41-50"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining and Geo-Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/IJMGE.2013.50089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 15

Abstract

Edge detection and edge enhancement techniques play an essential role in interpreting potential field data. This paper describes the application of various edge detection techniques to gravity data in order to delineate the edges of subsurface structures. The edge detection methods comprise analytic signal, total horizontal derivative (THDR), theta angle, tilt angle, hyperbolic of tilt angle (HTA), normalised total horizontal gradient (TDX) and normalised horizontal derivative (NTHD). The results showed that almost all filters delineated edges of anomalies successfully. However, the capability of these filters in edge detection decreased as the depth of sources increased. Of the edge enhancement filters, normalized standard deviation filter provided much better results in delineating deeper sources. The edge detection techniques were further applied on a real gravity data from the Gheshm sedimentary basin in the Persian Gulf in Iran. All filters specified a northeast-southwest structural trend. The THDR better outlined the structural morphology and trend. Moreover, it indicated the salt plugs much better than other filters. Analytic signal and THDR successfully enhanced the edges of the shorter wavelength residual structures. Normalized standard deviation (NSTD), TDX and hyperbolic of tilt angle (HTA) filters highlighted the likely fault pattern and lineaments, with a dominant northeast-southwest structural trend. This case study shows that the edge detection techniques provides valuable information for geologists and petroleum engineers to outline the horizontal location of geological sources including salt plugs and stand out buried faults, contacts and other tectonic and geological features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盖什姆沉积盆地重力场边缘检测
边缘检测和边缘增强技术在势场数据解释中起着至关重要的作用。本文介绍了各种边缘检测技术在重力数据中的应用,以圈定地下构造的边缘。边缘检测方法包括解析信号、总水平导数(THDR)、θ角、倾角、倾角双曲(HTA)、归一化总水平梯度(TDX)和归一化水平导数(NTHD)。结果表明,几乎所有滤波器都能成功地圈定异常边缘。然而,这些滤波器的边缘检测能力随着源深度的增加而下降。在边缘增强滤波器中,归一化标准差滤波器在描绘更深的源方面效果更好。将边缘检测技术进一步应用于伊朗波斯湾Gheshm沉积盆地的实际重力数据。所有过滤器都显示了东北-西南的结构趋势。THDR较好地勾勒出构造形态和趋势。此外,它表明盐塞比其他过滤器要好得多。分析信号和THDR成功地增强了较短波长的残余结构的边缘。归一化标准差(NSTD)、TDX和双曲倾角(HTA)滤波器突出了可能的断层模式和断层线,以东北-西南为主。该案例研究表明,边缘检测技术为地质学家和石油工程师提供了有价值的信息,可以勾勒出包括盐塞在内的地质源的水平位置,并突出隐伏断层、接触层和其他构造和地质特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mining and Geo-Engineering
International Journal of Mining and Geo-Engineering Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Categorical fracture orientation modeling: applied to an Iranian oil field Applying an integrated fuzzy gray MCDM approach: A case study on mineral processing plant site selection DEM Analysis of Backfilled Walls Subjected to Active Translation Mode Preliminary Beneficiation and Washability Studies on Ghouzlou's Low-Ash Coal Sample Combined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1