A fat orthogonal search method for biological time-series analysis and system identification

M. Korenberg
{"title":"A fat orthogonal search method for biological time-series analysis and system identification","authors":"M. Korenberg","doi":"10.1109/ICSMC.1989.71337","DOIUrl":null,"url":null,"abstract":"The fast orthogonal search method is illustrated for carrying out both system identification and time-series analysis of biological processes. It is first shown how the method can be used to rapidly obtain concise and accurate difference equation models of nonlinear dynamic systems. Then it is considered how the fast orthogonal algorithm enables accurate identification of cascades of alternating dynamic linear and static nonlinear sub-systems from short data records. Finally, it is illustrated how the method achieves accurate, parsimonious sinusoidal series representations of time-series data. It is shown that the method is capable of precise detection of component frequencies in time-series heavily corrupted with noise, demonstrating finer frequency resolution than a conventional Fourier series analysis.<<ETX>>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":"178 1","pages":"459-465 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMC.1989.71337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The fast orthogonal search method is illustrated for carrying out both system identification and time-series analysis of biological processes. It is first shown how the method can be used to rapidly obtain concise and accurate difference equation models of nonlinear dynamic systems. Then it is considered how the fast orthogonal algorithm enables accurate identification of cascades of alternating dynamic linear and static nonlinear sub-systems from short data records. Finally, it is illustrated how the method achieves accurate, parsimonious sinusoidal series representations of time-series data. It is shown that the method is capable of precise detection of component frequencies in time-series heavily corrupted with noise, demonstrating finer frequency resolution than a conventional Fourier series analysis.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于生物时间序列分析和系统识别的正交搜索方法
用快速正交搜索法对生物过程进行系统辨识和时间序列分析。首先说明了该方法如何能够快速得到简洁准确的非线性动力系统差分方程模型。然后考虑了快速正交算法如何从短数据记录中准确识别动态线性和静态非线性交替子系统的级联。最后,说明了该方法如何实现时间序列数据的精确、简洁的正弦序列表示。结果表明,该方法能够精确检测被噪声严重破坏的时间序列中的分量频率,比传统的傅立叶级数分析显示出更好的频率分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bioelectronic Zeitgebers: targeted neuromodulation to re-establish circadian rhythms. MorpheusNet: Resource efficient sleep stage classifier for embedded on-line systems. LoST: A Mental Health Dataset of Low Self-esteem in Reddit Posts. Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication. Pattern Recognition in Vital Signs Using Spectrograms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1