{"title":"Approximation of Discrete Measures by Finite Point Sets","authors":"Christian Weiss","doi":"10.2478/udt-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract For a probability measure μ on [0, 1] without discrete component, the best possible order of approximation by a finite point set in terms of the star-discrepancy is &inline as has been proven relatively recently. However, if μ contains a discrete component no non-trivial lower bound holds in general because it is straightforward to construct examples without any approximation error in this case. This might explain, why the approximation of discrete measures on [0, 1] by finite point sets has so far not been completely covered in the existing literature. In this note, we close the gap by giving a complete description for discrete measures. Most importantly, we prove that for any discrete measures (not supported on one point only) the best possible order of approximation is for infinitely many N bounded from below by &inline for some constant 6 ≥ c> 2 which depends on the measure. This implies, that for a finitely supported discrete measure on [0, 1]d the known possible order of approximation &inline is indeed the optimal one.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"33 1","pages":"31 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract For a probability measure μ on [0, 1] without discrete component, the best possible order of approximation by a finite point set in terms of the star-discrepancy is &inline as has been proven relatively recently. However, if μ contains a discrete component no non-trivial lower bound holds in general because it is straightforward to construct examples without any approximation error in this case. This might explain, why the approximation of discrete measures on [0, 1] by finite point sets has so far not been completely covered in the existing literature. In this note, we close the gap by giving a complete description for discrete measures. Most importantly, we prove that for any discrete measures (not supported on one point only) the best possible order of approximation is for infinitely many N bounded from below by &inline for some constant 6 ≥ c> 2 which depends on the measure. This implies, that for a finitely supported discrete measure on [0, 1]d the known possible order of approximation &inline is indeed the optimal one.