V. Zinchenko, I. Magunov, O. V. Mozkova, B. A. Gorshteĭn, V. P. Sobol, L. V. Sadkovska
{"title":"COMPARATIVE CHARACTERISTICS OF COATINGS WITH SiO AND GeO ON LEUCOSAPPHIRE","authors":"V. Zinchenko, I. Magunov, O. V. Mozkova, B. A. Gorshteĭn, V. P. Sobol, L. V. Sadkovska","doi":"10.18524/2304-0947.2021.2(78).233815","DOIUrl":null,"url":null,"abstract":"The reasons for the sharp difference in the adhesion of multilayer coatings containing SiO or GeO together with Ge on a leucosapphire (Al2O3) plate have been established. It should be mentioned that Silicon(II) and Germanium(II) oxides are quite stable in the gaseous state and, contrary, are metastable in condensed state; at high temperature they disproportionate into ultra-dispersed composites of amorphous nature. A comparison is made of the surface properties of ultramicroscopic droplets formed on solid surfaces – a substrate or the previous layer – upon condensation of SiO, GeO, or Ge vapors on leucosapphire. A qualitative assessment of the ratio of the corresponding contact angles of wetting by the indicated melts, formed at the first moment of contact, has been carried out. In assessing the surface tension of SiO and GeO melts (or Si – SiO2 and Ge – GeO2 composites), we proceeded from the corresponding values for SiO2 and GeO2, which are 296 and 248 mJ/m2 near the crystallization temperatures. On this basis, it was established that the smallest value of the contact angle, and hence the best wetting, is observed for the GeO melt (somewhat less for the SiO melt) on the solid surface of Al2O3 or Ge; the solid surface of SiO or GeO (especially, the first of them) with molten germanium should be much weaker wetted. Hence, it follows that thin-film multilayer coatings obtained from Ge and GeO on a leucosapphire substrate should have a significantly higher climatic resistance due to higher adhesion compared to multilayer coatings from SiO and Ge. Indeed, a multilayer coating containing SiO on a leucosapphire substrate with a large surface can withstand storage in air for no more than 2–3 months and begins to peel off; at the same time, the GeO coating remains intact after 4 years of storage. Thus, the GeO film-forming material is a promising one for use in multilayer coatings such as cut-off filters in interference optics of the near and mid-IR spectral ranges.","PeriodicalId":19451,"journal":{"name":"Odesa National University Herald. Chemistry","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Odesa National University Herald. Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18524/2304-0947.2021.2(78).233815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The reasons for the sharp difference in the adhesion of multilayer coatings containing SiO or GeO together with Ge on a leucosapphire (Al2O3) plate have been established. It should be mentioned that Silicon(II) and Germanium(II) oxides are quite stable in the gaseous state and, contrary, are metastable in condensed state; at high temperature they disproportionate into ultra-dispersed composites of amorphous nature. A comparison is made of the surface properties of ultramicroscopic droplets formed on solid surfaces – a substrate or the previous layer – upon condensation of SiO, GeO, or Ge vapors on leucosapphire. A qualitative assessment of the ratio of the corresponding contact angles of wetting by the indicated melts, formed at the first moment of contact, has been carried out. In assessing the surface tension of SiO and GeO melts (or Si – SiO2 and Ge – GeO2 composites), we proceeded from the corresponding values for SiO2 and GeO2, which are 296 and 248 mJ/m2 near the crystallization temperatures. On this basis, it was established that the smallest value of the contact angle, and hence the best wetting, is observed for the GeO melt (somewhat less for the SiO melt) on the solid surface of Al2O3 or Ge; the solid surface of SiO or GeO (especially, the first of them) with molten germanium should be much weaker wetted. Hence, it follows that thin-film multilayer coatings obtained from Ge and GeO on a leucosapphire substrate should have a significantly higher climatic resistance due to higher adhesion compared to multilayer coatings from SiO and Ge. Indeed, a multilayer coating containing SiO on a leucosapphire substrate with a large surface can withstand storage in air for no more than 2–3 months and begins to peel off; at the same time, the GeO coating remains intact after 4 years of storage. Thus, the GeO film-forming material is a promising one for use in multilayer coatings such as cut-off filters in interference optics of the near and mid-IR spectral ranges.