POINT AND INTERVAL FORECASTS OF DEATH RATES USING NEURAL NETWORKS

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-02-23 DOI:10.1017/asb.2021.34
Simon Schnürch, R. Korn
{"title":"POINT AND INTERVAL FORECASTS OF DEATH RATES USING NEURAL NETWORKS","authors":"Simon Schnürch, R. Korn","doi":"10.1017/asb.2021.34","DOIUrl":null,"url":null,"abstract":"Abstract The Lee–Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network (NN) architecture for mortality rate forecasting, empirically compare this model as well as other NN models to the Lee–Carter model and find that lower forecast errors are achievable for many countries in the Human Mortality Database. We provide details on the errors and forecasts of our model to make it more understandable and, thus, more trustworthy. As NN by default only yield point estimates, previous works applying them to mortality modeling have not investigated prediction uncertainty. We address this gap in the literature by implementing a bootstrapping-based technique and demonstrate that it yields highly reliable prediction intervals for our NN model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2021.34","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract The Lee–Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network (NN) architecture for mortality rate forecasting, empirically compare this model as well as other NN models to the Lee–Carter model and find that lower forecast errors are achievable for many countries in the Human Mortality Database. We provide details on the errors and forecasts of our model to make it more understandable and, thus, more trustworthy. As NN by default only yield point estimates, previous works applying them to mortality modeling have not investigated prediction uncertainty. We address this gap in the literature by implementing a bootstrapping-based technique and demonstrate that it yields highly reliable prediction intervals for our NN model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用神经网络的死亡率点和区间预测
Lee-Carter模型已成为随机死亡率建模的基准。然而,现代机器学习技术可以显著提高其预测性能。我们提出了一种卷积神经网络(NN)结构用于死亡率预测,并将该模型以及其他NN模型与Lee-Carter模型进行了经验比较,发现人类死亡率数据库中许多国家的预测误差都可以达到较低。我们提供了模型的错误和预测的详细信息,使其更容易理解,从而更值得信赖。由于神经网络默认只产生点估计,以前将其应用于死亡率建模的工作没有研究预测的不确定性。我们通过实现基于自举的技术来解决文献中的这一空白,并证明它为我们的神经网络模型产生了高度可靠的预测区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1