Choline kinase inhibitors synergize with TRAIL in the treatment of colorectal tumors and overcomes TRAIL resistance

J. Lacal, L. Andĕra
{"title":"Choline kinase inhibitors synergize with TRAIL in the treatment of colorectal tumors and overcomes TRAIL resistance","authors":"J. Lacal, L. Andĕra","doi":"10.4103/2395-3977.196910","DOIUrl":null,"url":null,"abstract":"Aim: The aim of this study was to investigate the effects of the combination of choline kinase inhibitor MN58b and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) against colon cancer cells. Methods: TRAIL-sensitive (DLD-1) and TRAIL-resistant (SW620) cells were treated with MN58b and/or TRAIL. Cell viability and induction of apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide and flow cytometry. Posttreatment expression levels of different proteins (PARP, caspase-3, X-linked inhibitor of apoptosis protein [XIAP], CHOP, DR5, DR4, CHOP) were analyzed by quantitative reverse transcription polymerase chain reaction, Western blot, and flow cytometry.In vivo antitumoral activity was assessed by xenograft models. Results: A strong synergistic effect of TRAIL and MN58b was observed in both TRAIL-sensitive and resistant cells. The combinatory treatment induced an increase in PARP and active-caspase 3 fragments along with a decrease in XIAP, enhancing TRAIL sensitivity. Reduced cellular viability and increased cell death correlated with increased DR5 expression and membrane surface recruitment, an effect that was concomitant with CHOP expression. Conclusion: MN58b, which alone exhibits anticancer activities against a wide variety of tumor-derived cell lines, synergizes with TRAIL through a mechanism that involves DR5 upregulation. This study supports the use of MN58b in combination with TRAIL on colorectal tumors, including those that develop TRAIL resistance.","PeriodicalId":9428,"journal":{"name":"Cancer Translational Medicine","volume":"62 1","pages":"163 - 174"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Translational Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2395-3977.196910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Aim: The aim of this study was to investigate the effects of the combination of choline kinase inhibitor MN58b and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) against colon cancer cells. Methods: TRAIL-sensitive (DLD-1) and TRAIL-resistant (SW620) cells were treated with MN58b and/or TRAIL. Cell viability and induction of apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide and flow cytometry. Posttreatment expression levels of different proteins (PARP, caspase-3, X-linked inhibitor of apoptosis protein [XIAP], CHOP, DR5, DR4, CHOP) were analyzed by quantitative reverse transcription polymerase chain reaction, Western blot, and flow cytometry.In vivo antitumoral activity was assessed by xenograft models. Results: A strong synergistic effect of TRAIL and MN58b was observed in both TRAIL-sensitive and resistant cells. The combinatory treatment induced an increase in PARP and active-caspase 3 fragments along with a decrease in XIAP, enhancing TRAIL sensitivity. Reduced cellular viability and increased cell death correlated with increased DR5 expression and membrane surface recruitment, an effect that was concomitant with CHOP expression. Conclusion: MN58b, which alone exhibits anticancer activities against a wide variety of tumor-derived cell lines, synergizes with TRAIL through a mechanism that involves DR5 upregulation. This study supports the use of MN58b in combination with TRAIL on colorectal tumors, including those that develop TRAIL resistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胆碱激酶抑制剂与TRAIL协同治疗结直肠肿瘤,克服TRAIL耐药性
目的:探讨胆碱激酶抑制剂MN58b联合肿瘤坏死因子相关凋亡诱导配体(TRAIL)对结肠癌细胞的作用。方法:用MN58b和/或TRAIL处理TRAIL敏感细胞(DLD-1)和TRAIL耐药细胞(SW620)。采用3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑和流式细胞术检测细胞活力和诱导凋亡情况。通过定量逆转录聚合酶链反应、Western blot和流式细胞术分析处理后不同蛋白(PARP、caspase-3、X-linked inhibitor of apoptosis protein [XIAP]、CHOP、DR5、DR4、CHOP)的表达水平。通过异种移植物模型评估体内抗肿瘤活性。结果:TRAIL和MN58b在TRAIL敏感和耐药细胞中均有较强的协同作用。联合治疗导致PARP和活性caspase 3片段增加,XIAP减少,TRAIL敏感性增强。细胞活力的降低和细胞死亡的增加与DR5表达和膜表面募集的增加有关,这种效应伴随着CHOP的表达。结论:MN58b单独对多种肿瘤源性细胞系表现出抗癌活性,其与TRAIL的协同作用机制涉及DR5上调。本研究支持MN58b联合TRAIL治疗结直肠肿瘤,包括那些产生TRAIL耐药性的结直肠肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclooxygenase-2 contributes to mutant epidermal growth factor receptor lung tumorigenesis by promoting an immunosuppressive environment Comparison of histopathological grading and staging of breast cancer with p53-positive and transforming growth factor-beta receptor 2-negative immunohistochemical marker expression cases Characteristics and outcome of patients with pheochromocytoma Chemical compositions and antiproliferative effect of essential oil of asafoetida on MCF7 human breast cancer cell line and female wistar rats Protein disulfide isomerase A3: A potential regulatory factor of colon epithelial cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1