Local permutation tests for conditional independence

Ilmun Kim, Matey Neykov, Sivaraman Balakrishnan, L. Wasserman
{"title":"Local permutation tests for conditional independence","authors":"Ilmun Kim, Matey Neykov, Sivaraman Balakrishnan, L. Wasserman","doi":"10.1214/22-aos2233","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate local permutation tests for testing conditional independence between two random vectors X and Y given Z . The local permutation test determines the significance of a test statistic by locally shuffling samples which share similar values of the conditioning variables Z , and it forms a natural extension of the usual permutation approach for unconditional independence testing. Despite its simplicity and empirical support, the theoretical underpinnings of the local permutation test remain unclear. Motivated by this gap, this paper aims to establish theoretical foundations of local permutation tests with a particular focus on binning-based statistics. We start by revisiting the hardness of conditional independence testing and provide an upper bound for the power of any valid conditional independence test, which holds when the probability of observing “collisions” in Z is small. This negative result naturally motivates us to impose additional restrictions on the possible distributions under the null and alternate. To this end, we focus our attention on certain classes of smooth distributions and identify provably tight conditions under which the local permutation method is universally valid, i.e. it is valid when applied to any (binning-based) test statistic. To complement this result on type I error control, we also show that in some cases, a binning-based statistic calibrated via the local permutation method can achieve minimax optimal power. We also introduce a double-binning permutation strategy, which yields a valid test over less smooth null distributions than the typical single-binning method without compromising much power. Finally, we present simulation results to support our theoretical","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aos2233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we investigate local permutation tests for testing conditional independence between two random vectors X and Y given Z . The local permutation test determines the significance of a test statistic by locally shuffling samples which share similar values of the conditioning variables Z , and it forms a natural extension of the usual permutation approach for unconditional independence testing. Despite its simplicity and empirical support, the theoretical underpinnings of the local permutation test remain unclear. Motivated by this gap, this paper aims to establish theoretical foundations of local permutation tests with a particular focus on binning-based statistics. We start by revisiting the hardness of conditional independence testing and provide an upper bound for the power of any valid conditional independence test, which holds when the probability of observing “collisions” in Z is small. This negative result naturally motivates us to impose additional restrictions on the possible distributions under the null and alternate. To this end, we focus our attention on certain classes of smooth distributions and identify provably tight conditions under which the local permutation method is universally valid, i.e. it is valid when applied to any (binning-based) test statistic. To complement this result on type I error control, we also show that in some cases, a binning-based statistic calibrated via the local permutation method can achieve minimax optimal power. We also introduce a double-binning permutation strategy, which yields a valid test over less smooth null distributions than the typical single-binning method without compromising much power. Finally, we present simulation results to support our theoretical
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
条件独立性的局部排列检验
在给定Z的情况下,研究了检验两个随机向量X和Y之间条件独立性的局部置换检验。局部置换检验通过对条件变量Z值相近的样本进行局部洗牌来确定检验统计量的显著性,是对通常的无条件独立性检验的置换方法的自然扩展。尽管它的简单性和经验支持,局部排列检验的理论基础仍然不清楚。基于这一差距,本文旨在建立局部排列检验的理论基础,并特别关注基于分类的统计。我们首先重新审视条件独立测试的难度,并为任何有效的条件独立测试的幂提供一个上界,当观察到Z中的“碰撞”概率很小时,这个上界成立。这个消极的结果自然促使我们对null和alternate下的可能分布施加额外的限制。为此,我们将注意力集中在光滑分布的某些类别上,并确定局部排列方法普遍有效的可证明紧条件,即当应用于任何(基于binning的)检验统计量时,它都是有效的。为了在I型误差控制上补充这一结果,我们还表明,在某些情况下,通过局部排列方法校准的基于分类的统计量可以达到最小最大最优功率。我们还引入了一种双分箱排列策略,它比典型的单分箱方法在不太光滑的零分布上产生有效的测试,而不会牺牲太多的功率。最后,我们给出了仿真结果来支持我们的理论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum likelihood for high-noise group orbit estimation and single-particle cryo-EM Local Whittle estimation of high-dimensional long-run variance and precision matrices Efficient estimation of the maximal association between multiple predictors and a survival outcome The impacts of unobserved covariates on covariate-adaptive randomized experiments Estimation of expected Euler characteristic curves of nonstationary smooth random fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1