M. Eftekhari, M. Abbasi, Azam Tarafdari, Alireza Emami-Ardekani, S. Farzanefar, F. Kalantari, B. Fallahi, A. Fard-Esfahani, D. Beiki, M. Naseri, M. Saghari
{"title":"Automated Interpretation of Myocardial Perfusion Images with Multilayer Perceptron Network as a Decision Support System","authors":"M. Eftekhari, M. Abbasi, Azam Tarafdari, Alireza Emami-Ardekani, S. Farzanefar, F. Kalantari, B. Fallahi, A. Fard-Esfahani, D. Beiki, M. Naseri, M. Saghari","doi":"10.1166/JMIHI.2018.2567","DOIUrl":null,"url":null,"abstract":"Aim: Bull's eye pattern recognition with artificial neural networks (ANNs) has the potential to assist interpretation of myocardial perfusion images (MPIs). We aimed to develop a model for interpretation of MPI based on the clinical variables and imaging data. Materials and\n Methods: The study included 208 patients referred to the department of nuclear medicine for 2-day stress-rest ECG-gated MPI. Several ANN models were designed with the following input variables: average count of 20 segments of the bull's eye images of stress and rest MPIs, gender, the constellation\n of coronary artery disease risk factors and scintigraphic cardiac ejection fraction. The procedure was repeated excluding the data of the rest phase scan. Data of 150 subjects were used for training, 21 subjects for cross-validation and 37 subjects for final operation testing. Several ANN\n models were examined with different hidden layers and processing elements and functions. The target output variable was the conclusion of the nuclear physician (i.e., normal vs. abnormal scan). Results: A multilayer perceptron (MLP) with two hidden layers trained with both stress and\n rest data demonstrated the best performance to classify the normal and abnormal MPIs. It showed an overall accuracy of 91.9%, sensitivity of 91.3% and specificity of 92.9%. The accuracy of the similar MLP trained using stress-only myocardial perfusion images reduced to 67.6%. Conclusion:\n The automated interpretation of MPIs with a 2 hidden layer MLP trained with stress and rest images could be an accurate support system either for the interpretation or quality assurance.","PeriodicalId":49032,"journal":{"name":"Journal of Medical Imaging and Health Informatics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JMIHI.2018.2567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Aim: Bull's eye pattern recognition with artificial neural networks (ANNs) has the potential to assist interpretation of myocardial perfusion images (MPIs). We aimed to develop a model for interpretation of MPI based on the clinical variables and imaging data. Materials and
Methods: The study included 208 patients referred to the department of nuclear medicine for 2-day stress-rest ECG-gated MPI. Several ANN models were designed with the following input variables: average count of 20 segments of the bull's eye images of stress and rest MPIs, gender, the constellation
of coronary artery disease risk factors and scintigraphic cardiac ejection fraction. The procedure was repeated excluding the data of the rest phase scan. Data of 150 subjects were used for training, 21 subjects for cross-validation and 37 subjects for final operation testing. Several ANN
models were examined with different hidden layers and processing elements and functions. The target output variable was the conclusion of the nuclear physician (i.e., normal vs. abnormal scan). Results: A multilayer perceptron (MLP) with two hidden layers trained with both stress and
rest data demonstrated the best performance to classify the normal and abnormal MPIs. It showed an overall accuracy of 91.9%, sensitivity of 91.3% and specificity of 92.9%. The accuracy of the similar MLP trained using stress-only myocardial perfusion images reduced to 67.6%. Conclusion:
The automated interpretation of MPIs with a 2 hidden layer MLP trained with stress and rest images could be an accurate support system either for the interpretation or quality assurance.
期刊介绍:
Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas. As an example, the Distributed Diagnosis and Home Healthcare (D2H2) aims to improve the quality of patient care and patient wellness by transforming the delivery of healthcare from a central, hospital-based system to one that is more distributed and home-based. Different medical imaging modalities used for extraction of information from MRI, CT, ultrasound, X-ray, thermal, molecular and fusion of its techniques is the focus of this journal.