Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications

Wei Chen, Aidi Pi, Shaoqi Wang, Xiaobo Zhou
{"title":"Pufferfish: Container-driven Elastic Memory Management for Data-intensive Applications","authors":"Wei Chen, Aidi Pi, Shaoqi Wang, Xiaobo Zhou","doi":"10.1145/3357223.3362730","DOIUrl":null,"url":null,"abstract":"Data-intensive applications often suffer from significant memory pressure, resulting in excessive garbage collection (GC) and out-of-memory (OOM) errors, harming system performance and reliability. In this paper, we demonstrate how lightweight virtualization via OS containers opens up opportunities to address memory pressure and realize memory elasticity: 1) tasks running in a container can be set to a large heap size to avoid OutOfMemory (OOM) errors, and 2) tasks that are under memory pressure and incur significant swapping activities can be temporarily \"suspended\" by depriving resources from the hosting containers, and be \"resumed\" when resources are available. We propose and develop Pufferfish, an elastic memory manager, that leverages containers to flexibly allocate memory for tasks. Memory elasticity achieved by Pufferfish can be exploited by a cluster scheduler to improve cluster utilization and task parallelism. We implement Pufferfish on the cluster scheduler Apache Yarn. Experiments with Spark and MapReduce on real-world traces show Pufferfish is able to avoid OOM errors, improve cluster memory utilization by 2.7x and the median job runtime by 5.5x compared to a memory over-provisioning solution.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Data-intensive applications often suffer from significant memory pressure, resulting in excessive garbage collection (GC) and out-of-memory (OOM) errors, harming system performance and reliability. In this paper, we demonstrate how lightweight virtualization via OS containers opens up opportunities to address memory pressure and realize memory elasticity: 1) tasks running in a container can be set to a large heap size to avoid OutOfMemory (OOM) errors, and 2) tasks that are under memory pressure and incur significant swapping activities can be temporarily "suspended" by depriving resources from the hosting containers, and be "resumed" when resources are available. We propose and develop Pufferfish, an elastic memory manager, that leverages containers to flexibly allocate memory for tasks. Memory elasticity achieved by Pufferfish can be exploited by a cluster scheduler to improve cluster utilization and task parallelism. We implement Pufferfish on the cluster scheduler Apache Yarn. Experiments with Spark and MapReduce on real-world traces show Pufferfish is able to avoid OOM errors, improve cluster memory utilization by 2.7x and the median job runtime by 5.5x compared to a memory over-provisioning solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pufferfish:用于数据密集型应用程序的容器驱动弹性内存管理
数据密集型应用程序通常承受巨大的内存压力,导致过多的垃圾收集(GC)和内存不足(OOM)错误,从而损害系统性能和可靠性。在本文中,我们演示了通过操作系统容器的轻量级虚拟化如何打开解决内存压力和实现内存弹性的机会:1)可以将在容器中运行的任务设置为较大的堆大小,以避免OutOfMemory (OOM)错误;2)处于内存压力下并引发重大交换活动的任务可以通过从托管容器中剥夺资源来暂时“挂起”,并在资源可用时“恢复”。我们提出并开发了Pufferfish,一个弹性内存管理器,它利用容器灵活地为任务分配内存。集群调度器可以利用Pufferfish实现的内存弹性来提高集群利用率和任务并行性。我们在集群调度程序Apache Yarn上实现了Pufferfish。使用Spark和MapReduce进行的实验表明,与内存过度配置解决方案相比,Pufferfish能够避免OOM错误,将集群内存利用率提高2.7倍,将中位数作业运行时间提高5.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OneEdge Towards Reliable AI for Source Code Understanding Chronus Open Research Problems in the Cloud Building Reliable Cloud Services Using Coyote Actors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1