Predicting SARS-CoV-2 Variant Using Non-Invasive Hand Odor Analysis: A Pilot Study

Analytica Pub Date : 2023-05-22 DOI:10.3390/analytica4020016
Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton
{"title":"Predicting SARS-CoV-2 Variant Using Non-Invasive Hand Odor Analysis: A Pilot Study","authors":"Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton","doi":"10.3390/analytica4020016","DOIUrl":null,"url":null,"abstract":"The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytica4020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用无创手气味分析预测SARS-CoV-2变异:一项试点研究
SARS-CoV-2病毒的适应性导致了多种令人关注的病毒变体的出现。这项研究建立在先前的一项演示的基础上,该演示通过采样人手气味来区分SARS-CoV-2感染状态,以便纳入疾病变体的考虑。本研究证明了人类气味表达可以作为非侵入性培养基实现SARS-CoV-2变体的分化。采用固相微萃取(SPME) -气相色谱-质谱联用(GC-MS)技术从sars - cov -2阳性样品中提取挥发性有机化合物(VOCs)。稀疏偏最小二乘判别分析(sPLS-DA)模型表明,监督式机器学习可以仅使用VOC表达来预测样本的变异身份。Delta和Omicron BA.5变异样本的分类准确率为95.2%(±0.4)。Omicron BA.2和Omicron BA.5变异的正确分类准确率为78.5%(±0.8)。最后,Delta和Omicron BA.2样本的分配精度为71.2%(±1.0)。这项工作建立在非侵入性技术的框架上,通过分析人类气味表达来产生诊断,所有这些都是为了支持公共卫生监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Enteromorpha compressa Macroalgal Biomass Nanoparticles as Eco-Friendly Biosorbents for the Efficient Removal of Harmful Metals from Aqueous Solutions Assessment of Lycopene Levels in Dried Watermelon Pomace: A Sustainable Approach to Waste Reduction and Nutrient Valorization Development of a Paper-Based Sol–Gel Vapochromic Sensor for the Detection of Vapor Cross-Contamination within a Closed Container Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.) Detection of Gene Doping Using Dried Blood Spots from a Mouse Model with rAAV9 Vector-Mediated Human Erythropoietin Expression as a Pilot Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1