Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton
{"title":"Predicting SARS-CoV-2 Variant Using Non-Invasive Hand Odor Analysis: A Pilot Study","authors":"Vidia A Gokool, Janet Crespo-Cajigas, A. Ramírez Torres, Liam Forsythe, Benjamin S. Abella, Howard K. Holness, A. T. C. Johnson, Richard Postrel, K. Furton","doi":"10.3390/analytica4020016","DOIUrl":null,"url":null,"abstract":"The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytica4020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The adaptable nature of the SARS-CoV-2 virus has led to the emergence of multiple viral variants of concern. This research builds upon a previous demonstration of sampling human hand odor to distinguish SARS-CoV-2 infection status in order to incorporate considerations of the disease variants. This study demonstrates the ability of human odor expression to be implemented as a non-invasive medium for the differentiation of SARS-CoV-2 variants. Volatile organic compounds (VOCs) were extracted from SARS-CoV-2-positive samples using solid phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). Sparse partial least squares discriminant analysis (sPLS-DA) modeling revealed that supervised machine learning could be used to predict the variant identity of a sample using VOC expression alone. The class discrimination of Delta and Omicron BA.5 variant samples was performed with 95.2% (±0.4) accuracy. Omicron BA.2 and Omicron BA.5 variants were correctly classified with 78.5% (±0.8) accuracy. Lastly, Delta and Omicron BA.2 samples were assigned with 71.2% (±1.0) accuracy. This work builds upon the framework of non-invasive techniques producing diagnostics through the analysis of human odor expression, all in support of public health monitoring.