Overcoming the voltage losses caused by the acceptor‐based interlayer in laminated indoor OPVs

SmartMat Pub Date : 2023-08-02 DOI:10.1002/smm2.1237
Gulzada Beket, A. Zubayer, Qilun Zhang, J. Stahn, F. Eriksson, M. Fahlman, T. Österberg, J. Bergqvist, Feng Gao
{"title":"Overcoming the voltage losses caused by the acceptor‐based interlayer in laminated indoor OPVs","authors":"Gulzada Beket, A. Zubayer, Qilun Zhang, J. Stahn, F. Eriksson, M. Fahlman, T. Österberg, J. Bergqvist, Feng Gao","doi":"10.1002/smm2.1237","DOIUrl":null,"url":null,"abstract":"Harvesting indoor light to power electronic devices for the Internet of Things has become an application scenario for emerging photovoltaics, especially utilizing organic photovoltaics (OPVs). Combined liquid‐ and solid‐state processing, such as printing and lamination used in industry for developing indoor OPVs, also provides a new opportunity to investigate the device structure, which is otherwise hardly possible based on the conventional approach due to solvent orthogonality. This study investigates the impact of fullerene‐based acceptor interlayer on the performance of conjugated polymer–fullerene‐based laminated OPVs for indoor applications. We observe open‐circuit voltage (VOC) loss across the interface despite this arrangement being presumed to be ideal for optimal device performance. Incorporating insulating organic components such as polyethyleneimine (PEI) or polystyrene (PS) into fullerene interlayers decreases the work function of the cathode, leading to better energy level alignment with the active layer (AL) and reducing the VOC loss across the interface. Neutron reflectivity studies further uncover two different mechanisms behind the VOC increase upon the incorporation of these insulating organic components. The self‐organized PEI layer could hinder the transfer of holes from the AL to the acceptor interlayer, while the gradient distribution of the PS‐incorporated fullerene interlayer eliminates the thermalization losses. This work highlights the importance of structural dynamics near the extraction interfaces in OPVs and provides experimental demonstrations of interface investigation between solution‐processed cathodic fullerene layer and bulk heterojunction AL.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Harvesting indoor light to power electronic devices for the Internet of Things has become an application scenario for emerging photovoltaics, especially utilizing organic photovoltaics (OPVs). Combined liquid‐ and solid‐state processing, such as printing and lamination used in industry for developing indoor OPVs, also provides a new opportunity to investigate the device structure, which is otherwise hardly possible based on the conventional approach due to solvent orthogonality. This study investigates the impact of fullerene‐based acceptor interlayer on the performance of conjugated polymer–fullerene‐based laminated OPVs for indoor applications. We observe open‐circuit voltage (VOC) loss across the interface despite this arrangement being presumed to be ideal for optimal device performance. Incorporating insulating organic components such as polyethyleneimine (PEI) or polystyrene (PS) into fullerene interlayers decreases the work function of the cathode, leading to better energy level alignment with the active layer (AL) and reducing the VOC loss across the interface. Neutron reflectivity studies further uncover two different mechanisms behind the VOC increase upon the incorporation of these insulating organic components. The self‐organized PEI layer could hinder the transfer of holes from the AL to the acceptor interlayer, while the gradient distribution of the PS‐incorporated fullerene interlayer eliminates the thermalization losses. This work highlights the importance of structural dynamics near the extraction interfaces in OPVs and provides experimental demonstrations of interface investigation between solution‐processed cathodic fullerene layer and bulk heterojunction AL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克服了室内层压opv中基于受体的中间层造成的电压损失
收集室内光为物联网电子设备供电已成为新兴光伏,特别是利用有机光伏(opv)的应用场景。结合液态和固态处理,例如用于工业开发室内opv的印刷和层压,也为研究器件结构提供了新的机会,否则基于溶剂正交性的传统方法几乎不可能。本研究探讨了富勒烯基受体间层对室内应用的共轭聚合物-富勒烯基叠层opv性能的影响。尽管这种排列被认为是理想的最佳器件性能,但我们观察到整个接口的开路电压(VOC)损耗。将绝缘有机成分(如聚乙烯亚胺(PEI)或聚苯乙烯(PS))纳入富勒烯中间层可以降低阴极的功函数,从而与活性层(AL)形成更好的能级排列,并减少通过界面的VOC损失。中子反射率研究进一步揭示了两种不同的机制背后的VOC增加在这些绝缘有机成分的合并。自组织的PEI层阻碍了空穴从AL向受体间层的转移,而PS掺杂的富勒烯间层的梯度分布消除了热化损失。这项工作强调了opv中萃取界面附近结构动力学的重要性,并提供了溶液处理阴极富勒烯层和体异质结AL之间界面研究的实验证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chiral gypsum with high‐performance mechanical properties induced by self‐assembly of chiral amino acid on an amorphous mineral Electrolyte‐gated organic field‐effect transistors with high operational stability and lifetime in practical electrolytes Efforts of implementing ultra‐flexible thin‐film encapsulation for optoelectronic devices based on atomic layer deposition technology Flexible retinomorphic vision sensors with scotopic and photopic adaptation for a fully flexible neuromorphic machine vision system Coral‐inspired anti‐biofilm therapeutic abutments as a new paradigm for prevention and treatment of peri‐implant infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1