Giovanni Lugaresi, Gianluca Aglio, Federico Folgheraiter, A. Matta
{"title":"Real-time Validation of Digital Models for Manufacturing Systems: a Novel Signal-processing-based Approach","authors":"Giovanni Lugaresi, Gianluca Aglio, Federico Folgheraiter, A. Matta","doi":"10.1109/COASE.2019.8843082","DOIUrl":null,"url":null,"abstract":"Recently, the connection between manufacturing systems and their digital counterparts has become of great significance for planning and control activities in a short-term scope. However, the alignment of a digital model with a very dynamic system is not always guaranteed, and traditional validation techniques cannot be used since they are designed for off-line simulators and rely on the availability of a large amount of data. This work develops a novel validation procedure inspired by signal-processing theory and a novel approach called quasi Trace Driven Simulation. The procedure is coherent with a Real-Time Simulation framework since it does not require large datasets to provide a good solution. The approach has been tried on test cases which demonstrated its applicability to a manufacturing environment.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"488 1","pages":"450-455"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Recently, the connection between manufacturing systems and their digital counterparts has become of great significance for planning and control activities in a short-term scope. However, the alignment of a digital model with a very dynamic system is not always guaranteed, and traditional validation techniques cannot be used since they are designed for off-line simulators and rely on the availability of a large amount of data. This work develops a novel validation procedure inspired by signal-processing theory and a novel approach called quasi Trace Driven Simulation. The procedure is coherent with a Real-Time Simulation framework since it does not require large datasets to provide a good solution. The approach has been tried on test cases which demonstrated its applicability to a manufacturing environment.