Retrieving opinions from discussion forums

Laura Dietz, Ziqi Wang, Samuel Huston, W. Bruce Croft
{"title":"Retrieving opinions from discussion forums","authors":"Laura Dietz, Ziqi Wang, Samuel Huston, W. Bruce Croft","doi":"10.1145/2505515.2507861","DOIUrl":null,"url":null,"abstract":"Abstract Understanding the landscape of opinions on a given topic or issue is important for policy makers, sociologists, and intelligence analysts. The first step in this process is to retrieve relevant opinions. Discussion forums are potentially a good source of this information, but comes with a unique set of retrieval challenges. In this short paper, we test a range of existing techniques for forum retrieval and develop new retrieval models to differentiate between opinionated and factual forum posts. We are able to demonstrate some significant performance improvements over the baseline retrieval models, demonstrating that this as a promising avenue for further study.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Understanding the landscape of opinions on a given topic or issue is important for policy makers, sociologists, and intelligence analysts. The first step in this process is to retrieve relevant opinions. Discussion forums are potentially a good source of this information, but comes with a unique set of retrieval challenges. In this short paper, we test a range of existing techniques for forum retrieval and develop new retrieval models to differentiate between opinionated and factual forum posts. We are able to demonstrate some significant performance improvements over the baseline retrieval models, demonstrating that this as a promising avenue for further study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从论坛中检索意见
对政策制定者、社会学家和情报分析人员来说,了解某一特定话题或问题的观点格局是非常重要的。这个过程的第一步是检索相关意见。讨论论坛可能是这类信息的一个很好的来源,但是它带来了一组独特的检索挑战。在这篇短文中,我们测试了一系列现有的论坛检索技术,并开发了新的检索模型来区分武断的和事实的论坛帖子。我们能够在基线检索模型上展示一些显著的性能改进,证明这是一个有前途的进一步研究途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1