{"title":"Novel high performance poly(sulfone-ether-amide-imide)s","authors":"Sajjad Nazemzadeh, S. Mehdipour‐Ataei","doi":"10.1080/1023666X.2022.2062155","DOIUrl":null,"url":null,"abstract":"Abstract A novel sulfone ether amide diamine was prepared through a two-step synthetic route. At first, 3,3′-((sulfonyl bis(1,4-phenylene))bis(oxy))dianiline was prepared from nucleophilic aromatic substitution reaction of 3-aminophenol with 4,4′-dichlorodiphenyl sulfone in the presence of K2CO3. In the second step, the reaction of this compound with isophthaloyl chloride resulted in the preparation of a unique aromatic diamine containing amide, ether, and sulfone groups. Then three different kinds of poly(sulfone-ether-amide-imide)s were prepared via polycondensation reaction of the synthesized diamine with different dianhydrides including pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, and hexafluoroisopropylidene diphthalic anhydride. The structures of synthesized precursors, monomer, and prepared polymers were characterized using elemental analysis, 1H-NMR and FT-IR spectroscopy methods. Inherent viscosity, molecular weight, thermal behavior and stability, flame retardancy, and solubility of polymers were studied. As the polymers showed high thermal stability and also improved solubility, they can be used as heat and fire resistant materials.","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/1023666X.2022.2062155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A novel sulfone ether amide diamine was prepared through a two-step synthetic route. At first, 3,3′-((sulfonyl bis(1,4-phenylene))bis(oxy))dianiline was prepared from nucleophilic aromatic substitution reaction of 3-aminophenol with 4,4′-dichlorodiphenyl sulfone in the presence of K2CO3. In the second step, the reaction of this compound with isophthaloyl chloride resulted in the preparation of a unique aromatic diamine containing amide, ether, and sulfone groups. Then three different kinds of poly(sulfone-ether-amide-imide)s were prepared via polycondensation reaction of the synthesized diamine with different dianhydrides including pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, and hexafluoroisopropylidene diphthalic anhydride. The structures of synthesized precursors, monomer, and prepared polymers were characterized using elemental analysis, 1H-NMR and FT-IR spectroscopy methods. Inherent viscosity, molecular weight, thermal behavior and stability, flame retardancy, and solubility of polymers were studied. As the polymers showed high thermal stability and also improved solubility, they can be used as heat and fire resistant materials.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.