{"title":"Study on Water Quality Inversion Model of Dianchi Lake Based on Landsat 8 Data","authors":"Jiaju Cao, Xingping Wen, Dayou Luo, Yi Mei Tan","doi":"10.1155/2022/3341713","DOIUrl":null,"url":null,"abstract":"Efficient, comprehensive, continuous, and accurate monitoring of organic pollution in lakes can provide a reliable basis for water quality assessment and water pollution prevention This paper takes Dianchi Lake as the research object, aiming at the four important water quality indexes of permanganate index (COD), dissolved oxygen (DO), hydrogen ion (pH), and ammonia nitrogen (NH3-N); based on the correlation analysis of Landsat 8 data and measured water quality data, an inversion model is constructed to obtain the spatial distribution of the four indexes. The results show that the relative errors of permanganate index (COD) in neural network and multiple regression are 9.68% and 17.48%, respectively; 3.81% and 3.36% in dissolved oxygen (DO); 1.25% and 1.58% in hydrogen ion (pH); in ammonia nitrogen (NH3-N), it is 15.39% and 24.97%, respectively. The lowest COD in the study area is 6.2 mg/L and the highest is 9.8 mg/L; in 2018, the DO is 5.81 mg/L at the lowest and 9.05 mg/L at the highest; the lowest pH is 5.9 mg/L, the highest is 8.54 mg/L, and the lowest NH3-N is 0.22 mg/L, the highest is 0.41 mg/L. The inversion results of the overall pollutant concentration in the study area are consistent with the actual situation, with only some slight deviations in some areas. The two inversion models can effectively monitor the water quality and spatial distribution of Dianchi Lake. The remote sensing inversion model of water quality has the value of in-depth research and promotion.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/3341713","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient, comprehensive, continuous, and accurate monitoring of organic pollution in lakes can provide a reliable basis for water quality assessment and water pollution prevention This paper takes Dianchi Lake as the research object, aiming at the four important water quality indexes of permanganate index (COD), dissolved oxygen (DO), hydrogen ion (pH), and ammonia nitrogen (NH3-N); based on the correlation analysis of Landsat 8 data and measured water quality data, an inversion model is constructed to obtain the spatial distribution of the four indexes. The results show that the relative errors of permanganate index (COD) in neural network and multiple regression are 9.68% and 17.48%, respectively; 3.81% and 3.36% in dissolved oxygen (DO); 1.25% and 1.58% in hydrogen ion (pH); in ammonia nitrogen (NH3-N), it is 15.39% and 24.97%, respectively. The lowest COD in the study area is 6.2 mg/L and the highest is 9.8 mg/L; in 2018, the DO is 5.81 mg/L at the lowest and 9.05 mg/L at the highest; the lowest pH is 5.9 mg/L, the highest is 8.54 mg/L, and the lowest NH3-N is 0.22 mg/L, the highest is 0.41 mg/L. The inversion results of the overall pollutant concentration in the study area are consistent with the actual situation, with only some slight deviations in some areas. The two inversion models can effectively monitor the water quality and spatial distribution of Dianchi Lake. The remote sensing inversion model of water quality has the value of in-depth research and promotion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.