I. Campos, M. D. Brida, G. D. Divitiis, A. Lytle, M. Papinutto, A. Vladikas
{"title":"$\\chi$SF near the electroweak scale","authors":"I. Campos, M. D. Brida, G. D. Divitiis, A. Lytle, M. Papinutto, A. Vladikas","doi":"10.22323/1.363.0202","DOIUrl":null,"url":null,"abstract":"We employ the chirally rotated Schrodinger functional ($\\chi$SF) to study two-point fermion bilinear correlation functions used in the determination of $Z_{A,V,S,P,T}$ on a series of well-tuned ensembles. The gauge configurations, which span renormalisation scales from 4 to 70~GeV, are generated with $N_{\\rm f}=3$ massless flavors and Schrodinger Functional (SF) boundary conditions. Valence quarks are computed with $\\chi$SF boundary conditions. We show preliminary results on the tuning of the $\\chi$SF Symanzik coefficient $z_f$ and the scaling of the axial current normalization $Z_{\\rm A}$. Moreover we carry out a detailed comparison with the expectations from one-loop perturbation theory. Finally we outline how automatically $\\mathrm{O}(a)$-improved $B_{\\rm K}$ matrix elements, including BSM contributions, can be computed in a $\\chi$SF renormalization scheme.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We employ the chirally rotated Schrodinger functional ($\chi$SF) to study two-point fermion bilinear correlation functions used in the determination of $Z_{A,V,S,P,T}$ on a series of well-tuned ensembles. The gauge configurations, which span renormalisation scales from 4 to 70~GeV, are generated with $N_{\rm f}=3$ massless flavors and Schrodinger Functional (SF) boundary conditions. Valence quarks are computed with $\chi$SF boundary conditions. We show preliminary results on the tuning of the $\chi$SF Symanzik coefficient $z_f$ and the scaling of the axial current normalization $Z_{\rm A}$. Moreover we carry out a detailed comparison with the expectations from one-loop perturbation theory. Finally we outline how automatically $\mathrm{O}(a)$-improved $B_{\rm K}$ matrix elements, including BSM contributions, can be computed in a $\chi$SF renormalization scheme.