Abstract: Autonomic Modeling of Data-Driven Application Behavior

S. Monteiro, G. Bronevetsky, Marc Casas
{"title":"Abstract: Autonomic Modeling of Data-Driven Application Behavior","authors":"S. Monteiro, G. Bronevetsky, Marc Casas","doi":"10.1109/SC.Companion.2012.277","DOIUrl":null,"url":null,"abstract":"Computational behavior of large-scale data driven applications is a complex function of their input, configuration settings, and underlying system architecture. Difficulty in predicting the behavior of these applications makes it challenging to optimize their performance and schedule them onto compute resources. However, manually diagnosing performance problems and reconfiguring resource settings to improve application performance is infeasible and inefficient. We thus need autonomic optimization techniques that observe the application, learn from the observations, and subsequently successfully predict application behavior across different systems and load scenarios. This work presents a modular modeling approach for complex data-driven applications using statistical techniques. These techniques capture important characteristics of input data, consequent dynamic application behavior and system properties to predict application behavior with minimum human intervention. The work demonstrates how to adaptively structure and configure the models based on the observed complexity of application behavior in different input and execution scenarios.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"38 1","pages":"1485-1486"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computational behavior of large-scale data driven applications is a complex function of their input, configuration settings, and underlying system architecture. Difficulty in predicting the behavior of these applications makes it challenging to optimize their performance and schedule them onto compute resources. However, manually diagnosing performance problems and reconfiguring resource settings to improve application performance is infeasible and inefficient. We thus need autonomic optimization techniques that observe the application, learn from the observations, and subsequently successfully predict application behavior across different systems and load scenarios. This work presents a modular modeling approach for complex data-driven applications using statistical techniques. These techniques capture important characteristics of input data, consequent dynamic application behavior and system properties to predict application behavior with minimum human intervention. The work demonstrates how to adaptively structure and configure the models based on the observed complexity of application behavior in different input and execution scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摘要:数据驱动应用行为的自主建模
大规模数据驱动应用程序的计算行为是其输入、配置设置和底层系统架构的复杂函数。由于难以预测这些应用程序的行为,因此很难优化它们的性能并将它们调度到计算资源上。但是,手动诊断性能问题并重新配置资源设置以提高应用程序性能是不可行的,而且效率低下。因此,我们需要自主优化技术来观察应用程序,从观察中学习,然后成功地预测跨不同系统和负载场景的应用程序行为。这项工作为使用统计技术的复杂数据驱动应用程序提供了模块化建模方法。这些技术捕获输入数据的重要特征、随后的动态应用程序行为和系统属性,以最少的人为干预预测应用程序行为。该工作演示了如何根据在不同输入和执行场景中观察到的应用程序行为的复杂性自适应地构建和配置模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1