{"title":"Study of the effect of virtual mass force on two-phase critical flow","authors":"Hong Xu, Jiayue Chen, P. Ming, A. Badea, Xu Cheng","doi":"10.1515/kern-2022-0072","DOIUrl":null,"url":null,"abstract":"Abstract Critical (choked) flow is a highly concerning phenomenon in safety analysis for nuclear energy. The discharge mass flow rate prediction is crucial for engineering design and emergency response in case of nuclear accidents. Unfortunately, the critical flow is difficult to predict especially when the two-phase flow exists. The accuracy is based on a deeper understanding of the complex phenomenon of critical flow. The influence of virtual mass force on the two-phase critical flow was seldom concentrated on owing to the lack of suitable critical flow models for studies in detail. This study is based on a developed 6-equation two-phase critical flow model. It is confirmed that the virtual mass force contributes to the stability and convergence of the critical flow simulation and it will impact not only the critical mass flux but also the thermal hydraulic parameters along the discharge duct. The magnitude depends on the geometry of the discharge duct and the upstream condition. It is larger when the duct is longer and the pressure is lower. Furthermore, the virtual mass force for each flow regime was studied in detail with a sensitivity study. The results show that the most sensible condition for the virtual mass force is annular flow along a long tube under relatively low pressure. The future work is to develop a correlation of virtual mass force for critical flow specifically since the correlations in the literature were developed under general two-phase flow process conditions.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"36 1","pages":"203 - 212"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0072","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Critical (choked) flow is a highly concerning phenomenon in safety analysis for nuclear energy. The discharge mass flow rate prediction is crucial for engineering design and emergency response in case of nuclear accidents. Unfortunately, the critical flow is difficult to predict especially when the two-phase flow exists. The accuracy is based on a deeper understanding of the complex phenomenon of critical flow. The influence of virtual mass force on the two-phase critical flow was seldom concentrated on owing to the lack of suitable critical flow models for studies in detail. This study is based on a developed 6-equation two-phase critical flow model. It is confirmed that the virtual mass force contributes to the stability and convergence of the critical flow simulation and it will impact not only the critical mass flux but also the thermal hydraulic parameters along the discharge duct. The magnitude depends on the geometry of the discharge duct and the upstream condition. It is larger when the duct is longer and the pressure is lower. Furthermore, the virtual mass force for each flow regime was studied in detail with a sensitivity study. The results show that the most sensible condition for the virtual mass force is annular flow along a long tube under relatively low pressure. The future work is to develop a correlation of virtual mass force for critical flow specifically since the correlations in the literature were developed under general two-phase flow process conditions.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).