Ink‐Based Additive Nanomanufacturing of Functional Materials for Human‐Integrated Smart Wearables

Shujia Xu, Wenzhuo Wu
{"title":"Ink‐Based Additive Nanomanufacturing of Functional Materials for Human‐Integrated Smart Wearables","authors":"Shujia Xu, Wenzhuo Wu","doi":"10.1002/aisy.202000117","DOIUrl":null,"url":null,"abstract":"The economical, agile, customizable manufacturing, and integration of multifunctional device modules into networked systems with mechanical compliance and robustness enable unprecedented human‐integrated smart wearables and usher in exciting opportunities in emerging technologies. The additive manufacturing (AM) processes have emerged as potential candidates for rapid prototyping printed devices with diversified functionalities, e.g., energy harvesting/storage, sensing, actuation, and computation. However, there are few review reports about the ink‐based additive nanomanufacturing of functional materials for human‐integrated smart wearables. To fill this gap, herein, the recent progress in ink‐based additive nanomanufacturing technologies, focusing on their capability and potential for producing wearable human‐integrated devices, is reviewed. The manufacturing process integration, functional materials, device implementation, and application performance issues in designing and implementing the ink‐based additively nanomanufactured wearable systems are thoroughly discussed. The recent printed devices focusing on the processing conditions and performance metrics are comprehensively reviewed. Finally, the vision and outlook for the challenges and opportunities associated with related topics are provided. The rapid progress achieved in related disciplines enables more capable smart human‐integrated wearable systems that can be fully printed with rapid, agile, reconfigurable, and smart AM platforms.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The economical, agile, customizable manufacturing, and integration of multifunctional device modules into networked systems with mechanical compliance and robustness enable unprecedented human‐integrated smart wearables and usher in exciting opportunities in emerging technologies. The additive manufacturing (AM) processes have emerged as potential candidates for rapid prototyping printed devices with diversified functionalities, e.g., energy harvesting/storage, sensing, actuation, and computation. However, there are few review reports about the ink‐based additive nanomanufacturing of functional materials for human‐integrated smart wearables. To fill this gap, herein, the recent progress in ink‐based additive nanomanufacturing technologies, focusing on their capability and potential for producing wearable human‐integrated devices, is reviewed. The manufacturing process integration, functional materials, device implementation, and application performance issues in designing and implementing the ink‐based additively nanomanufactured wearable systems are thoroughly discussed. The recent printed devices focusing on the processing conditions and performance metrics are comprehensively reviewed. Finally, the vision and outlook for the challenges and opportunities associated with related topics are provided. The rapid progress achieved in related disciplines enables more capable smart human‐integrated wearable systems that can be fully printed with rapid, agile, reconfigurable, and smart AM platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于人体集成智能可穿戴设备的功能材料的油墨纳米增材制造
经济、灵活、可定制的制造,以及将多功能设备模块集成到具有机械遵从性和稳健性的网络系统中,使前所未有的人机集成智能可穿戴设备成为可能,并在新兴技术中迎来令人兴奋的机遇。增材制造(AM)工艺已成为具有多种功能的快速原型打印设备的潜在候选者,例如能量收集/存储、传感、驱动和计算。然而,关于墨水基添加剂纳米制造用于人体集成智能可穿戴设备的功能材料的综述报道很少。为了填补这一空白,本文综述了油墨基添加剂纳米制造技术的最新进展,重点介绍了它们在生产可穿戴人体集成设备方面的能力和潜力。深入讨论了基于油墨的纳米增材可穿戴系统的制造工艺集成、功能材料、器件实现和应用性能问题。全面回顾了近年来印刷器件的加工条件和性能指标。最后,对与相关主题相关的挑战和机遇进行了展望。相关学科的快速进展使更有能力的智能人机集成可穿戴系统能够通过快速、灵活、可重构和智能AM平台完全打印。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1