Generation of Human-Like Movements Based on Environmental Features

A. Zonta, S. Smit, M. Hoogendoorn, A. Eiben
{"title":"Generation of Human-Like Movements Based on Environmental Features","authors":"A. Zonta, S. Smit, M. Hoogendoorn, A. Eiben","doi":"10.1109/SSCI44817.2019.9002822","DOIUrl":null,"url":null,"abstract":"Modelling human behaviour in simulation is still an ongoing challenge that spaces between several fields like social science, artificial intelligence, and philosophy. Humans normally move driven by their intent (e.g. to get groceries) and the surrounding environment (e.g. curiosity to see new interesting places). Normal services available online and offline do not consider the environment when planning the path. Especially on a leisure trip, this is very important. This paper presents a comparison between different machine learning algorithms and a famous path planning algorithm in the task of generating human-like trajectories based on environmental features. We show how a modified version of the well known A* algorithm outperforms different machine learning algorithms by computed evaluation metrics and human evaluation in the task of generating bike trips in the area around Ljubljana, Slovenia.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"50 1","pages":"3079-3086"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modelling human behaviour in simulation is still an ongoing challenge that spaces between several fields like social science, artificial intelligence, and philosophy. Humans normally move driven by their intent (e.g. to get groceries) and the surrounding environment (e.g. curiosity to see new interesting places). Normal services available online and offline do not consider the environment when planning the path. Especially on a leisure trip, this is very important. This paper presents a comparison between different machine learning algorithms and a famous path planning algorithm in the task of generating human-like trajectories based on environmental features. We show how a modified version of the well known A* algorithm outperforms different machine learning algorithms by computed evaluation metrics and human evaluation in the task of generating bike trips in the area around Ljubljana, Slovenia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环境特征的类人运动生成
在模拟中对人类行为进行建模仍然是社会科学、人工智能和哲学等多个领域之间的一个持续挑战。人类的行动通常是由他们的意图(比如去买杂货)和周围环境(比如好奇地去看新的有趣的地方)驱动的。正常业务在线和离线时,规划路径时不考虑环境。尤其是在休闲旅行中,这是非常重要的。本文比较了不同的机器学习算法和一种著名的基于环境特征生成类人轨迹的路径规划算法。我们展示了著名的a *算法的改进版本如何通过计算评估指标和人类评估来超越不同的机器学习算法,在斯洛文尼亚卢布尔雅那附近地区生成自行车旅行的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1