{"title":"Wavelet Analysis of Daily Energy Demand and Weather Variables","authors":"A. Bonkaney, I. Seidou Sanda, A. Balogun","doi":"10.1155/2019/4974107","DOIUrl":null,"url":null,"abstract":"In this paper, we applied the Wavelet Transform Coherence (WTC) and phase analysis to analyze the relationship between the daily electricity demand (DED) and weather variables such as temperature, relative humidity, wind speed, and radiation. The DED data presents both seasonal fluctuations and increasing trend while the weather variables depict only seasonal variation. The results obtained from the WTC and phase analysis permit us to detect the period of time when the DED significantly correlates with the weather variables. We found a strong seasonal interdependence between the air temperature and DED for a periodicity of 256-512 days and 128-256 days. The relationship between the humidity and DED also shows a significant interdependence for a periodicity of 256-512 days with average coherence equal to 0.8. Regarding the radiation and wind speed, the correlation is low with average coherence less than 0.5. These results provide an insight into the properties of the impacts of weather variables on electricity demand on the basis of which power planners can rely to improve their forecasting and planning of electricity demand.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/4974107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper, we applied the Wavelet Transform Coherence (WTC) and phase analysis to analyze the relationship between the daily electricity demand (DED) and weather variables such as temperature, relative humidity, wind speed, and radiation. The DED data presents both seasonal fluctuations and increasing trend while the weather variables depict only seasonal variation. The results obtained from the WTC and phase analysis permit us to detect the period of time when the DED significantly correlates with the weather variables. We found a strong seasonal interdependence between the air temperature and DED for a periodicity of 256-512 days and 128-256 days. The relationship between the humidity and DED also shows a significant interdependence for a periodicity of 256-512 days with average coherence equal to 0.8. Regarding the radiation and wind speed, the correlation is low with average coherence less than 0.5. These results provide an insight into the properties of the impacts of weather variables on electricity demand on the basis of which power planners can rely to improve their forecasting and planning of electricity demand.