{"title":"In Situ Transesterification of Spirulina Microalgae to Produce Biodiesel Using Microwave Irradiation","authors":"A. Koech, Anil Kumar, Z. Siagi","doi":"10.1155/2020/8816296","DOIUrl":null,"url":null,"abstract":"<jats:p>The present technology of transesterification of vegetable oils to produce biodiesel, which is suited to replace petrodiesel, has economic challenges, and therefore, alternative sources are being explored. Microalgae, a renewable, third-generation biofuel resource, have the potential to become a viable feedstock due to their high oil content and environmentally friendly nature. The present study investigates the effect of microwave irradiation on the simultaneous extraction and transesterification of algae lipids to produce fatty acid methyl ester (FAME), in a batch reaction system using sulphuric acid catalyst. In situ transesterification combines the two steps of lipid extraction and transesterification into a single step. The microwave synthesis unit comprised of a 3-neck round bottom flask inside a 1300-Watt microwave oven, fitted with a quick-fit condenser and having an external stirrer. Response surface methodology (RSM) was used to analyse the influence of process variables, dry algae to methanol ratio <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>:</mo>\n <mn>4</mn>\n <mo>−</mo>\n <mn>1</mn>\n <mo>:</mo>\n <mn>14</mn>\n <mtext> </mtext>\n <mtext>g</mtext>\n <mo>/</mo>\n <mtext>ml</mtext>\n </mrow>\n </mfenced>\n <mo>,</mo>\n </math>\n </jats:inline-formula> algae biomass to catalyst ratio <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>:</mo>\n <mn>0.0032</mn>\n <mo>−</mo>\n <mn>1</mn>\n <mo>:</mo>\n <mn>0.0368</mn>\n <mtext> </mtext>\n <mtext>wt</mtext>\n <mi>%</mi>\n </mrow>\n </mfenced>\n <mo>,</mo>\n </math>\n </jats:inline-formula> and reaction time <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mn>11</mn>\n <mtext> </mtext>\n <mi mathvariant=\"normal\">min</mi>\n </mrow>\n </mfenced>\n <mo>,</mo>\n </math>\n </jats:inline-formula> at <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mn>500</mn>\n </math>\n </jats:inline-formula> rpm stirring rate for in situ reaction. FAME was analysed using gas chromatography (GC). The total lipid content of Arthrospira Spirulina platensis microalgae biomass was found to be <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mn>10.7</mn>\n <mi>%</mi>\n </math>\n </jats:inline-formula> by weight. The algae biomass also contained proteins at<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mtext> </mtext>\n <mn>51.83</mn>\n <mi>%</mi>\n </math>\n </jats:inline-formula>, moisture content at <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mn>7.8</mn>\n <mi>%</mi>\n </math>\n </jats:inline-formula>, and ash content <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mn>14.30</mn>\n <mi>%</mi>\n </math>\n </jats:inline-formula> by weight. RSM gave the optimum process conditions as dry algae biomass feed to methanol <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mtext>wt</mtext>\n <mo>/</mo>\n <mtext>vol</mtext>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> ratio of 1 : 9, catalyst concentration of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mn>2</mn>\n <mtext> </mtext>\n <mtext>wt</mtext>\n <mi>%</mi>\n <mo>,</mo>\n </math>\n </jats:inline-formula> and reaction time of<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mtext> </mtext>\n <mn>7</mn>\n <mtext> </mtext>\n <mtext>minutes</mtext>\n <mtext> </mtext>\n </math>\n </jats:inline-formula>for a maximum FAME yield of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mn>83.43</mn>\n <mtext> </mtext>\n <mtext>wt</mtext>\n <mi>%</mi>\n <mo>.</mo>\n </math>\n </jats:inline-formula>The major fatty acid composition of FAME was palmitic <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mn>43.83</mn>\n <mi>%</mi>\n </math>\n </jats:inline-formula>, linoleic<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mtext> </mtext>\n <mn>38.83</mn>\n <mi>%</mi>\n </math>\n </jats:inline-formula>, and linolenic <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mn>19.41</mn>\n <mi>%</mi>\n </math>\n </jats:inline-formula>. FAME properties obtained according to European Standards (EN 14214) and American Society for Testing and Materials (ASTM D 6751) standards were as follows: flash point <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mn>16</mn>\n <msup>\n <mrow>\n <mn>4</mn>\n </mrow>\n <mrow>\n <mtext>o</mtext>\n </mrow>\n </msup>\n <mtext>C</mtext>\n </math>\n </jats:inline-formula> calorific value <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mn>32,911</mn>\n <mtext> </mtext>\n <mtext>kJ</mtext>\n <mo>/</mo>\n <mtext>kg</mtext>\n <mo>,</mo>\n </math>\n </jats:inline-formula> acid value <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mn>0.475</mn>\n <mtext>KOH</mtext>\n <mo>/</mo>\n <mtext>g</mtext>\n <mo>,</mo>\n </math>\n </jats:inline-formula> viscosity <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <mn>4.45</mn>\n <mtext> </mtext>\n <mtext>m</mtext>\n <msup>\n <mrow>\n <mtext>m</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>/</mo>\n <mtext>s</mtext>\n </math>\n </jats:inline-formula>, and specific gravity<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <mtext> </mtext>\n <mn>0.868</mn>\n </math>\n </jats:inline-formula>. The study showed that Arthrospira Spirulina platensis microalgae lipid FAME met the biodiesel standards (EN 14214 and ASTM D 6751) and h","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8816296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The present technology of transesterification of vegetable oils to produce biodiesel, which is suited to replace petrodiesel, has economic challenges, and therefore, alternative sources are being explored. Microalgae, a renewable, third-generation biofuel resource, have the potential to become a viable feedstock due to their high oil content and environmentally friendly nature. The present study investigates the effect of microwave irradiation on the simultaneous extraction and transesterification of algae lipids to produce fatty acid methyl ester (FAME), in a batch reaction system using sulphuric acid catalyst. In situ transesterification combines the two steps of lipid extraction and transesterification into a single step. The microwave synthesis unit comprised of a 3-neck round bottom flask inside a 1300-Watt microwave oven, fitted with a quick-fit condenser and having an external stirrer. Response surface methodology (RSM) was used to analyse the influence of process variables, dry algae to methanol ratio algae biomass to catalyst ratio and reaction time at rpm stirring rate for in situ reaction. FAME was analysed using gas chromatography (GC). The total lipid content of Arthrospira Spirulina platensis microalgae biomass was found to be by weight. The algae biomass also contained proteins at, moisture content at , and ash content by weight. RSM gave the optimum process conditions as dry algae biomass feed to methanol ratio of 1 : 9, catalyst concentration of and reaction time offor a maximum FAME yield of The major fatty acid composition of FAME was palmitic , linoleic, and linolenic . FAME properties obtained according to European Standards (EN 14214) and American Society for Testing and Materials (ASTM D 6751) standards were as follows: flash point calorific value acid value viscosity , and specific gravity. The study showed that Arthrospira Spirulina platensis microalgae lipid FAME met the biodiesel standards (EN 14214 and ASTM D 6751) and h
根据欧洲标准(EN 14214)和美国材料试验协会(ASTM D 6751)标准获得的FAME性能如下:闪点16°C,热值32,911 kJ /kg,酸值0.475 KOH / g,粘度4.45 m m 2 / s;比重0.868。研究表明,Arthrospira spirina platensis微藻脂质FAME符合生物柴油标准(EN 14214和ASTM D 6751)和h