{"title":"Smart home devices and B2C e-commerce: a way to reduce failed deliveries","authors":"A. Seghezzi, R. Mangiaracina","doi":"10.1108/imds-10-2022-0651","DOIUrl":null,"url":null,"abstract":"PurposeFailed deliveries (i.e. deliveries not accomplished due to the absence of customers) represent a critical issue in B2C (Business-to-consumer) e-commerce last-mile deliveries, implying high costs for e-commerce players and negatively affecting customer satisfaction. A promising option to reduce them would be scheduling deliveries based on the probability to find customers at home. This work proposes a solution based on presence data (gathered through Internet of Things [IoT] devices) to organise the delivery tours, which aims to both minimise the travelled distance and maximise the probability to find customers at home.Design/methodology/approachThe adopted methodology is a multi-method approach, based on interviews with practitioners. A model is developed and applied to Milan (Italy) to compare the performance of the proposed innovative solution with traditional home deliveries (both in terms of cost and delivery success rate).FindingsThe proposed solution implies a significant reduction of missed deliveries if compared to the traditional operating mode. Accordingly, even if allocating the customers to time windows based on their availability profiles (APs) entails an increase in the total travel time, the average delivery cost per parcel decreases.Originality/valueOn the academic side, this work proposes and evaluates an innovative last-mile delivery (LMD) solution that exploits new AI (Artificial Intelligence)-based technological trends. On the managerial side, it proposes an efficient and effective novel option for scheduling last-mile deliveries based on the use of smart home devices, which has a significant impact in reducing costs and increasing the service level.","PeriodicalId":13427,"journal":{"name":"Ind. Manag. Data Syst.","volume":"93 1","pages":"1624-1645"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ind. Manag. Data Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-10-2022-0651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
PurposeFailed deliveries (i.e. deliveries not accomplished due to the absence of customers) represent a critical issue in B2C (Business-to-consumer) e-commerce last-mile deliveries, implying high costs for e-commerce players and negatively affecting customer satisfaction. A promising option to reduce them would be scheduling deliveries based on the probability to find customers at home. This work proposes a solution based on presence data (gathered through Internet of Things [IoT] devices) to organise the delivery tours, which aims to both minimise the travelled distance and maximise the probability to find customers at home.Design/methodology/approachThe adopted methodology is a multi-method approach, based on interviews with practitioners. A model is developed and applied to Milan (Italy) to compare the performance of the proposed innovative solution with traditional home deliveries (both in terms of cost and delivery success rate).FindingsThe proposed solution implies a significant reduction of missed deliveries if compared to the traditional operating mode. Accordingly, even if allocating the customers to time windows based on their availability profiles (APs) entails an increase in the total travel time, the average delivery cost per parcel decreases.Originality/valueOn the academic side, this work proposes and evaluates an innovative last-mile delivery (LMD) solution that exploits new AI (Artificial Intelligence)-based technological trends. On the managerial side, it proposes an efficient and effective novel option for scheduling last-mile deliveries based on the use of smart home devices, which has a significant impact in reducing costs and increasing the service level.